
International Journal of Energy Economics and Policy | Vol 13 • Issue 4 • 2023 467

International Journal of Energy Economics and 
Policy

ISSN: 2146-4553

available at http: www.econjournals.com

International Journal of Energy Economics and Policy, 2023, 13(4), 467-480.

Value at Risk and Expected Shortfall Estimation for Mexico’s 
Isthmus Crude Oil Using Long-Memory GARCH-EVT 
Combined Approaches

Raúl De Jesús Gutiérrez*, Lidia E. Carvajal Gutiérrez, Oswaldo García Salgado

Facultad de Economía, Universidad Autónoma del Estado de México, Paseo Universidad, Universitaria, 50130 Toluca de Lerdo, 
México. *Email: rdejesusg@uaemex.mx

Received: 26 February 2023 Accepted: 18 June 2023 DOI: https://doi.org/10.32479/ijeep.14179

ABSTRACT

This paper estimates a variety of CGARCH and FIGARCH models with normal distribution to capture salient features of Mexico’s Isthmus crude oil 
return series such as fat tails and volatility clustering as well as asymmetry and long memory; this to obtain independent and identically distributed 
standardized residuals series. Furthermore, extreme value theory is applied to model the tail behavior of the innovation distribution of the volatility 
models in estimating one-day-ahead VaR and Expected Shortfall (ES). In- and out-of-sample forecasting performance is evaluated by the unconditional 
coverage test of Kupiec and the Dynamic Quantile test of Engle and Manganelli. Backtesting results show strong and consistent evidence confirming 
that FIGARCH-EVT, ACGARCH1-EVT and CGARCH-EVT approaches yield the most accurate out-of-sample VaR and ES forecasts, for both 
short and long trading positions at quantiles ranging 95% to 99.9%. Findings provide useful tools for producers, consumers and portfolio investors 
who need sophisticated models for sound risk management and optimal hedging strategies to mitigate price risk exposure for the Isthmus crude oil.
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1. INTRODUCTION

During the last three decades crude oil market has undergone 
important changes and innovations to such an extent that its 
structure has become a sophisticated financial market. However, 
this market has faced uncertainty and high volatility due to the 
presence of extreme fluctuations in crude oil prices derived from 
international liberalization policies of the energy sector undertaken 
since the mid-1980s. Upturns and reversals in oil prices have been 
triggered by imbalances between supply and demand originating 
from several exogenous events, such as geopolitical tensions, 
institutional OPEC’s policies, military conflicts, financial and 
health crises, erratic economic growth, global climate change 
and diversification and speculation strategies as well as other 
factors affecting the global petroleum industry such as fracking, 

complex oil exploitation schemes, and oil spills (Boussena and 
Locatelli, 2005).

Extreme price movements and the increasing volatility do not 
only have negative effects on the global economy, but also imply 
a greater risk exposure for all crude oil market participants. That 
is, unexpected large losses with small probability of occurrence 
because of extreme market events in crude oil prices associated 
with left and right tails of the return distribution. Thus, risk 
administration processes in the energy sector have become a 
priority and a challenge for producers and industrial consumers of 
crude oil, as well as for investors seeking portfolio diversification. 
Consequently, in the literature, understanding and modeling 
extreme price fluctuations are significant importance in the 
development of financial models for quantifying and managing 
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risk exposure. In this context, Value at Risk (VaR) methodology is 
a standard statistical measure widely used in the financial industry 
for quantifying market risk and estimating capital requirement 
sufficiency to cover market losses.

VaR is defined as the maximum possible loss that a portfolio or 
a security can experience with a given probability over a certain 
time horizon. Since VaR has been adopted as a regulation measure 
by the Basle Committee, several models have been developed 
for estimating catastrophic and extreme market risk incidents; 
these models include parametric methods based on GARCH 
volatility models and under different distributional assumptions, 
non-parametric historical simulation (HS) approaches based on 
empirical distribution of returns, and methods based on extreme 
value theory (EVT). An unusually large quantity of studies has 
shown the predictive accuracy of GARCH models and simple-
filtered HS approaches in crude oil risk management. However, 
no consensus has been reached regarding the more appropriate 
model to predict the best VaR estimations about the crude oil 
market because phenomena such as fat tails, leptokurtosis and 
asymmetric effects, present in financial series, have been only 
partially modeled by proposed distributions in the literature 
(Bali and Theodossiou, 2007; Costello et al., 2008; Sowdagur 
and Narsoon, 2017; Riedle, 2018; Toumi et al., 2019; Echaust 
and Just, 2020).

In response to inconsistencies of conventional VaR approaches 
and their variants about modeling the magnitude and frequency 
of extreme returns in oil prices, EVT provides a solid statistical 
framework for analyzing the asymptotic behavior of extreme 
values and catastrophic risk related to tail areas of empirical 
distributions. In the pioneering work of Krehbiel and Adkins 
(2005), the conditional EVT is applied to energy commodity 
prices traded in New York Mercantile Exchange (NYMEX). 
Their findings reveal that the EVT-based approach provides more 
accurate forecasts than RiskMetrics and GARCH volatility models. 
Concerning WTI and Brent oil returns, Marimoutou et al. (2009) 
confirm the importance of filtering processes to improve both the 
performance of conditional EVT and filtered HS approaches, as 
well as capturing downside risk. In contrast, Ren and Giles (2010) 
suggest that unconditional EVT is sufficient to model the tails 
of the return distribution of the Canadian crude oil market and 
including more accurate VaR and ES estimations at high quantiles.

Chiu et al. (2010) offer robust evidence about poor predictive 
performance of the EVT approach in modeling tail risk of WTI 
and Brent crude oil prices. Still, Zikovic (2011) and Ghorbel and 
Trabelsi (2014) have found evidence favoring the EVT-based 
model for quantifying tail-related risk for WTI crude oil, natural 
gas, and heating oil futures contracts. In more recent studies, Susan 
and Waititu (2015) and Mi et al. (2017) reach the same results 
for the Brent and WTI crude oil markets by employing GARCH-
EVT models based on normal and generalized error distributions. 
Jammazi and Nguyen (2017) estimate associated tail risks with 
wavelet-based extreme value theory for portfolios of crude oil 
prices and US dollar exchange rates. Findings show that W-EVT 
approaches provide an effective and powerful tool for modeling 
extreme movements and improving the accuracy of VaR estimates 

and forecasts. Weru et al. (2019) focus on modeling and forecasting 
the volatility and VaR of WTI crude oil and reformulated regular 
gasoline prices using a family of GARCH-EVT models. They find 
solid evidence that IGARCH-EVT and EGARCH-EVT models 
provide more accurate VaR estimates.

The previous literature has shown that the conditional EVT 
method is a robust tool for measuring the tail-related risk. 
However, the used GARCH processes in the filtering procedure 
of the EVT approach often cannot capture the long-term memory 
property or the high degree of volatility persistence in the crude 
oil market, since the autocorrelations of volatility decay at 
exponential rates when the lag order increases (Baillie, 1996). In 
fact, the recent finance literature has confirmed the presence of 
the long memory feature or long-range dependence in crude oil 
returns and conditional volatility (Elder and Serletis, 2008; Choi 
and Hammoudeh, 2009; Aloui and Mabrouk, 2010; Klein and 
Walther, 2016).

Consequently, Youssef et al. (2015) suggest using a range of 
long-memory GARCH models to forecast conditional volatility 
and EVT as a filtering process. Their results show that the 
FIAPARCH-EVT model performs better than the FIGARCH-EVT 
and HYGARCH-EVT models in forecasting the one-day-ahead 
VaR. Finally, Zhao et al. (2019) introduce a hybrid time-varying 
long memory GARCH-M-EVT model for calculation of static and 
dynamic VaR in the WTI crude oil market. Empirical results show 
that the family of FIGARCH models can capture appropriately 
asymmetry and long memory features in the conditional volatility. 
Backtesting results show that the performance of FIAPARCH-
M-EVT model is superior to other GARCH-type models which 
only consider oil price fluctuation characteristics partially and 
traditional methods including Variance-Covariance and Monte 
Carlo in price risk measurement.

Most previous literature on energy price and returns risk measurement 
has focused on high quality crude oils based on their chemical 
and physical properties which are determined by the American 
Petroleum Institute (API). However, the empirical evidence is still 
limited for some varieties of low quality and less liquid crude oil 
despite the systematic evolution of the world crude oil market and its 
high volatility. To fill this gap in the empirical literature, this paper 
applies EVT to examine the conditional tail behavior of Mexico´s 
Isthmus crude oil returns and proposes VaR and ES measures to 
estimate extreme losses for long and short trading positions during 
the period January 02, 1995-December 31, 2020.

Isthmus is a medium sour crude oil, with an API gravity of 32-33°, 
and 1.8% sulfur content by weight. Its quality is like Arab light 
crude and Russian Urals crude. These physical properties make 
it appropriate for the high gasoline production and intermediate 
distillates. Although the Isthmus crude oil production is usually 
used for domestic consumption. However, exports of Isthmus 
crude oil have increased significantly from 11.19 to 51.11 million 
barrels, tripling almost its share of revenues from 722 to 1910 
million dollars during the period 2018-2020. Additionally, exports 
of Maya heavy crude fell by 14.6% in 2021, while Isthmus export 
sales increased by 29.2%, implying an increase in its production. 
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It aims at answering the following question: the use of CGARCH-
EVT and FIGARCH-EVT models could provide better information 
of true risk to participants in the Isthmus crude oil market?

In this respect, this paper contributes to the literature in the 
following two ways. First, it extends the McNeil and Frey’ (2000) 
two-stage approach by fitting a variety of two component GARCH 
(CGARCH) and fractional integrated GARCH (FIGARCH) 
models with normal innovations to capture some common 
characteristics such as heteroscedasticity, long memory, fat tails, 
and short- and long-term asymmetry of crude oil return volatility. 
To the best of our knowledge, this is the first study that uses 
CGARCH-EVT combined approaches for forecasting the VaR and 
ES of benchmark and Isthmus crude oils. Second, we employ the 
unconditional coverage test of Kupiec (2005) and the Dynamic 
Quantile test of Engle and Manganelli (2004) to evaluate VaR 
and ES in-sample and out-of-sample forecasting performance of 
FIGARCH-EVT and CGARCH-EVT models for both short and 
long trading positions in the Isthmus crude oil market. We run 
the backtesting over 1000 out-of-sample observations for periods 
ranging from January 02, 2013 to December 30, 2016, and from 
January 03, 2017 to December 31, 2020. This last period includes 
the COVID-19 crisis.

The remainder of the paper is structured as follows. Section 2 
presents a brief outline of the CGARCH and FIGARCH models 
and estimation approaches based on the extreme value theory. 
Section 3 describes the data and analyzes its basic statistics traits. 
Section 4 applies the models and discusses the empirical results. 
Finally, Section 5 presents the conclusions.

2. ECONOMETRIC METHODOLOGY

2.1. Definition of Value at Risk and Expected Shortfall
VaR statistical measure abridges portfolio risk exposure as the 
maximum potential loss over a given time horizon at a given 
confidence level. Mathematically, suppose R is a random variable 
denoting the loss of a given financial position or portfolio. For a 
given probability, p VaR is defined as

VaR p F pt t� � � � � �� �
�

1 1

1�  (1)

where σt+1 is the volatility of the cumulative distribution function 
that describes the loss distribution of the risky financial position 
and F−1 is the inverse of the loss distribution function, i.e., 
p-quantile of F.

VaR is the most widely used risk measure in the financial industry. 
However, VaR is not a coherent risk measure since it does not 
satisfy the axioms of sub-additivity and convexity. To overcome 
these shortcomings, Artzner et al. (1999) introduce an alternative 
risk measure, namely expected shortfall (ES). ES is defined as 
the expected value of potential loss exceeding the VaR level. 
Mathematically, ES for risk R and given probability p can be 
expressed by

ES E VaRp R R pt t� � � � � ��
�

�
�� �1 1

 (2)

To correctly estimate VAR and ES, it is important to model and 
forecast oil returns volatility. In the econometric literature, there is a 
family of generalized autoregressive conditional heteroscedasticity 
(GARCH) processes introduced by Engle (1982) and Bollerslev 
(1986), which are widely used to describe the time-varying 
structure of volatility of crude oil prices. However, they are not 
able to capture properly the impact of asymmetric leverage effect 
and the long memory.

2.2. Two Component GARCH Models
Long-term dependency, i.e., long memory observed in volatility 
processes, has been documented in innumerable empirical studies. 
However, it is well known that long memory cannot be captured 
by traditional GARCH modeling; for this reason, it is necessary to 
break down volatility into two components to describe the presence 
of persistence in the long and short run. An alternative specification 
that can capture long memory or high-persistence properties in 
oil return series is the CGARCH model proposed by Engle and 
Lee (1999). This approximation allows the decomposition of 
conditional volatility into two components so that the decay of 
the persistence in the short and long run can be analyzed properly, 
which cannot be achieved with the traditional GARCH models 
(Christoffersen et al., 2008).

The CGARCH model decomposes the volatility into its transitory 
and permanent components. Moreover, each component 
allows the variance innovations to decay at a different rate. Let 
Ωt-1 = {rT−n+1,…,rT} denote the information set of all observed 
returns up to time t−1. Assuming that the dynamics of return 
series can be described by an AR(1) model, the mean equation is 
defined as follows.

r r h z z Nt t t t t t� � � � � ��� � 1 0 1, ,  (3)

where rt denotes return at time t, µt is the conditional mean, εt is the 
innovation process with mean equal to 0 and conditional variance 
ht, while zt is an independent and identically distributed process 
with mean equal to 0 and variance equal to 1.

The conditional variance equation of AR(1)-CGARCH model can 
be expressed as follows:

h q q h qt t t t t t� � �� � � �� �� � � �� � �
1

2

1 1 1
 (4)

q h qt t t t� � �� � � �� �� � �� � � � �
1

2

1 1
 (5)

where ht and qt indicate the transitory and permanent 
components of conditional volatility, respectively. Note that the 
conditional volatility is mean reverting around the permanent 
volatility (qt). For the permanent component, the speed of 
mean reversion is determined by φ, value which typically lies 
between (α+β)<φ<1.

Due to the presence of positive and negative shocks of the same 
magnitude, but with different impact on volatility, the flexibility 
of the CGARCH model can be extended to capture asymmetric 
effects in the short and long run as follows:
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q h I h

q

t t t t t t

t

� � �� � � �� � �� �
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� � � � �

�
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2
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2

1

1
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 (7)

where the dummy variable governed by the Heaviside function 
I(∙), is equal to 1 if εt−1<0 and 0 otherwise. The leverage effects 
are observed when γ>0 and ψ>0.

The second alternative to capture the asymmetric effects in the 
short-run and long-run is defined as follows:

h q q q h qt t t t t t t t� � �� � � �� � � �� �� � � � � �� � � � �1 1 1 1 1 1 �  (8)

q h h qt t t t t t� � �� � � �� � � �� �� � � � �� � � � � � �1 1 1 1 1  (9)

where the asymmetry parameters γ and ψ are negative, by contrast 
with the previous asymmetric CGARCH model (ACGARCH1 
and ACGARCH2). The total effect on transitory and permanent 
volatility components is equal to � � ��� � �t 1  and � � ��� � �t 1  
if εt−1<0, and � � ��� � �t 1  and � � ��� � �t 1  if εt−1>0.

2.3. Fractional Integrated GARCH Models
Recent empirical studies have confirmed the presence of the 
long-range memory (persistence) characteristics for crude oil 
returns volatility (Kang et al., 2009; Youssef et al., 2015; Charles 
and Darné, 2014; Lanouar, 2016). To capture the long memory 
phenomenon, Baillie et al. (1996) proposed the fractionally 
integrated GARCH (FIGARCH) model by combining the 
fractionally integrated process for the mean with the standard 
GARCH process for the conditional variance. This model shows 
that the actual autocorrelations in conditional variance decay at a 
slow hyperbolic rate after a volatility shock.

The conditional variance of the FIGARCH model can be specified 
as follows:

h h L L Lt t
d

t� � � � �� � �� � �� ��
��

�
���

�� � � � �
1

1 2
1 1 1 1  (10)

where (L) is the lag operator and 0≤d≤1, ω>0, φ, β>1. The 
persistence of the conditional variance or the long memory degree 
is measured by the parameter d. φ(L) and β(L) are polynomials 
for the lag operators of orders p and q, respectively. The roots of 
φ(L) and β(L) lie outside the unit circle.

Additionally, the FIGARCH model assumes a conditional 
normality process and the conditional volatility symmetrically 
responds to the magnitude of both positive and negative shocks, 
which is not a desirable characteristic of a reality. To take into 
account asymmetric effects and the long memory property in 
volatility, Bollerslev and Mikkelsen (1996) extended the EGARCH 
model to the so-called fractionally integrated exponential GARCH 
model (FIEGARCH).

The FIEGARCH model is expressed as an ARMA process in terms 

of the logarithm of the conditional variance ht which is modeled by,

ln h L L L g zt
d

t� � � � � � �� � � � ��� �� � ��
�� � �1
11 1 �  (11)

where g z z z E zt t t t� � � � � � ��
�

�
�� � , the first term � zt� �  is the 

sign effect, and the second term � z E zt t� � ��
�

�
�  is the magnitude 

effect. Like the EGARCH model, no parameter restrictions are 
imposed in this model. Then, CGARCH, FIGARCH and 
FIEGARCH models are fitted to the raw return series {rT−n+1,…,rT} 
by quasi-maximum likelihood, computing standardized residuals. 
They are calculated as follows:

{ } 1 1
1

1

, , ,
ˆ

,
ˆ ˆ ˆ

ˆ ˆ
T n T n T T

T n T
T n T

r rz z
h h

µ µ− + − +
− +

− +

 − − … = … 
  

 (12)

To check the adequacy of the CGARCH and FIGARCH modeling, 
the standardized residual series should be free of autocorrelation 
and heteroscedasticity. Furthermore, EVT requires identically and 
independently distributed series to model the tail behavior of the 
innovation distribution and measure the conditional VaR and ES.

2.4. Estimation of VaR and ES Based on the EVT
Let R1,R2,…,Rn be a sequence of independent and identically 
distributed random variables, i.e., losses with an unknown 
distribution, F(r)=Pr(Ri≤r). Since the analysis is interested in 
modeling the losses that exceed a threshold u, the distribution 
function of excess losses (EVD) of yi=ri−u whenever ri exceeds 
u for i=1,…,k can be defined as:

F y Pr R u y R u

Pr u R u y
Pr R u

F u y F u
F u

u � � � � � �� �

�
� � �� �

�� �
�

�� � � � �
� � �1

�  (13)

For a sufficiently high threshold u the theorems of Balkema and De 
Haan (1974) and Pickands (1975) show that the excess distribution 
converges to the GPD as follows:

G y

y if

exp y if
�

��
�

�

�
�

� � �

� ��
�
�

�
�
� �

� ��
�
�

�
�
� �

�

�

�
�
��

�

�
�
�
�

�

1 1 0

1 0

1/

 (14)

where ξ is the shape parameter, and σ>0 is the scale parameter. The 
value of the parameter ξ may be positive, negative or zero, and 
serves to determine fatness of the tail. When ξ>0 the GPD takes the 
form of an ordinary Pareto distribution, which is more appropriate 
for crude oil series analysis since they are usually characterized 
by fatter tails. When ξ=0and ξ<0, the GPD has the form of the 
Exponential and Pareto type II distribution, respectively.

Similarly, F may be defined as F(r)=(1−F(u))Gξ(u)+F(u)). The 
non-parametric estimation of F(u) is determined by (n−k)/n, 
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where n is the total number of observations and k is the number 
of observations that exceed u. Substituting the estimated value 
for F(u) and equation (14) into F(r), the tail estimator has the 
following expression:

( ) ( ) 1 ˆ/
ˆˆ

ˆ
1 1

r ukF r
n

ξ

ξ
σ

−
 −

= +  
 

뱰  (15)

where ξ̂  and σ̂  are maximum likelihood estimates of ξ and σ 
as u gets larger.

To overcome the problems of the estimation based on the 
unconditional EVT, this paper utilizes the set of standardized 
residuals, which are closer independent and identically distributed 
series under the CGARCH or FIGARCH hypothesis. Let 
Z(1)≥Z(2)≥, ≥Z(n) denote the order statistics and n=k is the number 
of observations exceeding the threshold u, then Zk+1 is called the 
random threshold.

Thus, the peak over threshold (POT) approach can be applied to 
the tails of the innovation distribution, i.e., Z(1)−Z(k+1),…,Z(k)−Z(k+1). 
Consequently, a new tail estimator for F(z) with GPD parameters 
can be expressed as:

( ) ( )( ) 1/

1

ˆ

ˆˆ
ˆ

1 1
k

Z

z zkF z
n

ξ

ξ
σ

−

+
 − = + 
 
 

뱰  (16)

For a determined probability p, the VaR and ES for the innovations 
can be estimated as:

 ( ) ( )11VaR
ˆ

1ˆ
p

kt
nZ z p
k

ξσ
ξ

−

++

   = + −    
 (17)

 ( )
 ( ) ( )11

1

VaR
ES

1

ˆˆ
ˆ ˆ1

p
kp t

t

zZ
Z

σ ξ

ξ ξ
++

+

−
= +

− −
 (18)

Finally, an estimate of the conditional VaR for a 1-day horizon 
is defined by,

 ( )1 11 1VaR VaRˆˆ pp
t tt th Zµ + ++ +

= +  (19)

Similarly for a 1-day horizon, an estimate of the conditional ES 
is defined by,

 ( )1 11 1ES ESˆˆ pp
t tt th Zµ + ++ +

= +  (20)

where 1ˆtµ +  and 1t̂h +  are the forecasts of the conditional mean and 
the conditional variance at time t+1, while VaR Z t

p� � �1  and 

ES Z t
p� � �1  are given by Equations (17) and (18).

2.5. Backtesting the Risk Measures
According to the Basel Committee on Banking Supervision, if risk 
models do not provide capital requirements sufficiency to cover 
the realized loss, this fact is defined as a failure. All models should 
be evaluated with several statistical measures comparing their 
forecasting ability in terms of risk measurement. The backtesting 
procedure consists of comparing VaR and ES estimates with 
actual realized returns in the next period. In the literature, there 
are different backtesting procedures for examining the statistical 
accuracy of the risk models. This study applies the likelihood ratio 
test proposed by Kupiec (1995). This test examines whether the 
failure rate is statistically equal to the expected failure rate, α=1−p, 
where p is the confidence level used to estimate the VaR and the ES. 
If T indicates the overall number of observations, then the number 
of failures n follows a binomial distribution with probability α.

The likelihood ratio test statistic of Kupiec is computed as,

LR n
T

n
T

n T n
n T n� �

�
�

�
�
� ��
�
�

�
�
�

�

�
�
�

�

�
�
�
� � � �� ��

��
�
��

�
�

2 1 2 1ln ln � �  (21)

where LR~χ2 with one degree of freedom under the null hypothesis: 
H n

T0
: �� . If the value of LR is smaller than the critical values, 

the null hypothesis is accepted, which means that the estimation 
of VaR is reliable, while the alternative hypothesis is accepted if 
the model generate a large or small number of failures.

The Dynamic Quantile (DQ) test is also used in this study to 
evaluate the absolute performance of the VaR and ES forecasts. 
The DQ test of Engle and Manganelli (2004) is a conditional 
coverage test based on a linear regression model of the hit variable 
on a set of explanatory variables, that is, the process of hit function 
defined as

Hit I R VaR
if R VaR

otherwise
t t

t

� � �� � � �� � �
� �

� �� �

�

�
�

�
�

1

1

�
�

�

,

,

 (22)

where the null hypothesis for the DQ test is that the sequence 
of hits is uncorrelated with its own lagged values and with any 
other lagged variable (including past returns, past VaR, etc.) that 
belongs to the information set Ωt−1, and its expected value must 
be equal to zero.

The dynamic quantile test is a Wald test under the null hypothesis 
that all parameters, β0, βk, γk are zero in the regression model.

Hit Hit zt
k

K

k t k
k

K

k t k t� � � �
�

�
�

�� �� � � �
0

1 1

 (23)

where the zt−k explanatory variables belong to the information set 
Ωt−1 and εt is a discrete i.i.d. process.

Therefore, if we denote by ψ=(β0,β1,…,βk, γ1,….,γk) the vector 
of the 2K+1 parameters of the model and by Z the matrix of 
explanatory variables of model. The dynamic quantile test statistic 
satisfies the following relation:
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where Ψ̂  is the OLS estimate of Ψ.

3. DATA AND DESCRIPTIVE STATISTICS

3.1. Data Description
To examine the predictive ability of VaR and ES measures based 
on conditional EVT, this study uses daily Isthmus crude oil prices 
for the period January 02, 1995 to December 31, 2020 for a total 
6717 observations. The price data has been downloaded from 
Bloomberg, and the sample period has been selected considering 
available information. We examine the performance of the VaR 
and ES measures over two different sample periods. The first one 
runs from January 02, 1995 to December 31, 2016. This period is 
selected because the crude oil price experienced two large shocks 
in the second half of 2014 and early 2016. During this period of 
market uncertainty, the price of Isthmus crude oil fell by 77% 
because to the strong supply growth. The second one includes 
time series data from January 02, 1995 to December 31, 2020, 
when the impact of the first wave of the COVID-19 pandemic 
together with the oil price war between Saudi Arabia and Russia 
hammered the global crude oil market.

3.2. Preliminary Results
Most empirical analyses focus on return series rather than price 
series. We compute continuously compounded daily returns by 
taking the difference in the logarithms of two consecutive daily 
prices. Table 1 shows the descriptive statistics, Jarque-Bera statistic 
and Ljung-Box statistic for raw and squared returns. Results 
indicate that Isthmus crude oil returns have positive mean but 
relatively small in comparison with the standard deviation. This 
fact indicates that oil prices tend to increase over time and evidence 
a pronounced unconditional volatility. Returns are significantly 
skewed to the left for the period under scrutiny, indicating the 
presence of more negative outlying returns than positive ones in 
Isthmus time series. The return series exhibits high excess kurtosis 
which implies that the tails of the distribution of crude oil returns 
are larger and fatter than the tails of the normal distribution, due 
to the occurrence of atypical observations in the crude oil market. 
The evidence of no-normality of the distribution is also confirmed 
by the high significant Jarque-Bera statistic.

Moreover, the Ljung-Box Q2(20) statistics for squared returns 
reveals the presence of non-linear dependence and volatility 
clustering in the crude oil return series; periods of high volatility 
are followed by further high volatility and periods of low 
volatility are followed by further low volatility. The dynamics of 
returns exhibited in Figure 1 shows that the volatility clustering 
phenomenon became stronger during the 1997-1998 Asian 

financial crisis; 2000-2001 coinciding with the terrorist attack to 
the World Trade Center on September 11, 2001; the 2008-2009 
global financial crisis; and during the outbreak of the COVID-19 
pandemic on March 11, 2020. These events led to a succession of 
extreme downward and upward crude oil price movements within 
very short time spans. Consequently, findings of this preliminary 
analysis support the use of asymmetric CGARCH and FIGARCH 
models for capturing the short- and long-term asymmetry and long 
memory in crude oil volatility modeling.

4. EMPIRICAL RESULTS

4.1. CGARCH Model Estimates
To remove the effect of the autocorrelation and heteroscedasticity 
in Isthmus crude oil return series and get i.i.d. standardized 
residuals, first we estimate seven GARCH, CGARCH and 
FIGARCH specifications under normal distribution. Table 2 
displays the estimates of GARCH, CGARCH and FIGARCH 
models, as well as the diagnostics tests for standardized residuals 
and squared standardized residuals. Results of the mean equation 
show that the estimates of c are statistically significant at 1% and 
10% levels. The coefficient of the AR(1) process is negative and 
statistically significant at conventional levels of significance for 
EGARCH, ACGARCH1 and FIEGARCH models. The optimal lag 
length (k) in the system (3) is determined by the Hannan-Quinn 
information criteria. As for the conditional variance, the ARCH 
and GARCH coefficients, α and β, are positive and significant 
at the 1% level except for FIEGARCH model, indicating that 
the volatility is time-varying. Moreover, the sum of coefficients 
(α+β) is less than 1 for all of cases, confirming a high degree of 
persistence in the volatility and the stationarity condition for the 
conditional variance in the Isthmus crude oil market, particularly 
for GARCH, EGARCH, ACGARCH2 and FIGARCH models.

Although this fact is not supported by the estimated coefficients 
φ, since the values in the CGARCH and ACGARCH1 models 
are 0.9625 and 0.9717 against 0.7983 and 0.7574, measured 
by (α+β), respectively. This finding indicates that the long-run 
component of conditional volatility is highly persistent and dies 
out a hyperbolic rate of decay, absent in the short-run component. 
The level of statistical significance of parameters γ and ψ indicates 
that short-run and long-run conditional volatility exhibits an 
asymmetric response to positive and negative shocks at 1% and 
5% levels. This result confirms that the asymmetric impact of 
bad news increases the conditional volatility more than good 
news except for the alternative ACGARCH1 specification. The 
values of fractionally differencing parameters d are positive and 
statistically significantly different from zero, indicating that the 
crude oil return series exhibits the long memory volatility process. 
The long memory property parameter varies between 0.3749 
and 0.6725 for the FIGARCH and FIEGARCH specifications, 
respectively.

Table 1: Descriptive statistics for returns of Isthmus crude oil
Oil Mean Minimum Maximum SD Skewness Kurtosis J-B test Q2 (20)
Isthmus 0.0171 −52.7429 26.3265 2.8546 −1.4001 38.8886 382,341* 3753*
J-B test is the Jarque-Bera normality test statistic. Q2 (20) is the Ljung-Box statistic of the squared return series for testing serial correlation up to the 20 order. *denotes statistical 
significance at the 1% level
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Results of the diagnosis tests for standardized residuals and 
squared standardized residuals are reported in the Panel B 
of Table 2. A comparison between the Akaike information 
criterion and log likelihood statistics suggests that the estimated 
ACGARCH2 model has the best performance to capture the 

usual stylized fact observed in Isthmus crude oil return series 
such as conditional heteroscedasticity, asymmetric effects, and 
persistence in the variance process. Moreover, the results of the 
Ljung-Box statistics up to 4th and 20th order in the standardized and 
the squared standardized residuals, confirm the absence of linear 
and non-linear serial correlation. Thus, the filtering procedure is 
effective to obtain i.i.d. residual series. However, the high value 
of Jarque–Bera statistics rejects the null hypothesis of a normal 
distribution for all standardized residual series at the 1% level. 
This evidence suggests using CGARCH and FIGARCH models 
with EVT to provide the best fit to the left and right tails of the 
residual distribution.

4.2. Choice of Thresholds and Estimate Parameters for 
the GPD
The choice of threshold is one of the main and most important 
tasks for identifying the tail part information before fitting the 
GPD to the data since this issue implies a trade-off between bias 
and variance. According to Coles (2001), the choice of too low 
thresholds might generate biased estimates because the asymptotic 
theory does not apply any more. Conversely, high thresholds 
might provide more accurate estimates with high variance due 
to the limited number of observations. Two tools can be used to 

Table 2: Estimates of the GARCH, CGARCH and FIGARCH models for crude oil returns
GARCH EGARCH CGARCH ACGARCH1 ACGARCH2 FIGARCH FIEGARCH

Panel A: Parameter estimation
c 0.08876*** 0.0295* 0.0725 0.0543* 0.0302 0.0838*** 0.0378

(0.0303) (0.0307) (0.0310) (0.0310) (0.0310) (0.0303) (0.0296)
ϕ −0.0170 −0.0258*** −0.0249 −0.0241 −0.0256* −0.0187 −0.0282**

(0.0149) (0.0139) (0.0158) (0.0154) (0.0153) (0.0156) (0.0150)
w 0.1433*** −0.0649*** 0.0139** 0.0128*** −0.0098*** 0.2534*** −0.1513***

(0.0159) (0.0053) (0.0045) (0.0040) (0.0024) (0.0417) (0.0138)
α 0.0787*** 0.1270*** 0.0885*** 0.0413*** 0.0780*** 0.3195*** 0.2101***

(0.0049) (0.0084) (0.0106) (0.0111) (0.0086) (0.0368) (0.0194)
β 0.9001*** 0.9826*** 0.7098*** 0.7161*** 0.9898*** 0.5750*** 0.1848**

(0.0063) (0.0021) (0.0473) (0.0441) (0.0017) (0.0421) (0.0988)
r 0.0186*** 0.0137*** 0.1182***

(0.0041) (0.0050) (0.0182)
j 0.9625*** 0.9617*** 0.7791***

(0.0061) (0.0062) (0.0453)
γ −0.3201*** 0.0759*** −0.2011** −0.0711***

(0.0456) (0.0161) (0.0835) (0.0096)
y 0.01232** −0.4396***

(0.0055) (0.0772)
d
d 0.3749*** 0.6725***

(0.0270) (0.0256)
α+β 0.9788 1.1096 0.7983 0.7574 1.0678 0.8945 0.3949

Panel B: Diagnostic tests
Log (L) −10573 −10555 −10560 −10546 −10543 −10566 −10554
AIC 2.1156 2.1122 2.1134 2.1110 2.1105 2.1143 2.1123
SIC 2.1189 2.1160 2.1179 2.1168 2.1163 2.1182 2.1168
Q (4) 2.6716 2.3829 2.5504 2.6333 2.3586 2.4236 2.5017

(0.6142) (0.6657) (0.6356) (0.6209) (0.6701) (0.6584) (0.6443)
Q (20) 9.9936 10.1636 9.9416 9.8194 9.9567 10.2877 10.6613

(0.9683) (0.9651) (0.9692) (0.9713) (0.9690) (0.9626) (0.9545)
Q2 (4) 1.5821 5.7355 1.3297 2.3370 1.2488 1.3337 1.0066

(0.8120) (0.2198) (0.8563) (0.6740) (0.8700) (0.8556) (0.9088)
Q2 (20) 16.0903 20.3941 9.0206 11.3006 11.2462 10.1849 13.0638

(0.7110) (0.4335) (0.9827) (0.9380) (0.9396) (0.9647) (0.8746)
J−B test 6599 (0) 6642 (0) 6638 (0) 6634 (0) 6641 (0) 6608 (0) 6653 (0)

Figure 1: Evolution of Isthmus crude oil returns from 
January 02, 1995 to December 31, 2020
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determine the appropriate threshold including the plot of empirical 
mean excess function (MEF) and the Hill plot.

In this study, the empirical MEF is employed, which is defined by

e z
k

z zn k
i

k

i k�� �
�

�� �� � � �� ��1
1

1
1  (26)

where the empirical MEF is the sum of the excesses over the 
threshold Z(k+1). The MEF is a linear function of Z(k+1) for the GPD 
model, so that the empirical MEF is a straight line above the 
threshold Z(k+1). If the empirical MEF is a positively sloped straight 
line above certain determined threshold Z(k+1), it is an indication 
that the data follows the GPD with a positive shape parameter ξ. 
On the other hand, exponentially distributed data would show a 
horizontal MEF while short-tailed data would have a negatively 
sloped line.

The empirical MEF is applied directly to the positive standardized 
residuals zt to choose thresholds. For negative standardized 
residuals, the series zt is transformed into −zt to get the empirical 
MEF from those maximums. The selected threshold values, 
the number of exceedances and the estimated scale and shape 
parameters as well as their standard errors are reported in Panel 
A and B of Table 3 for the GARCH, EGARCH, CGARCH, 
ACGARCH1, ACGARCH2, FIGARCH and FIEGARCH 
specifications with normally distributed innovations for both 
negative and positive standardized residuals. According to the 
criterion of linearity in the empirical MEF plots, the selected 
thresholds are very similar for negative and positive standardized 
residuals under different GARCH, CGARCH and FIGARCH 
specifications that range from 2.00 to 2.37 for lower tail and from 
2.11 to 2.33 for upper tail with several exceedances between 162 
and 204 and 126 and 166 for the sample period from January 02, 
1995 to December 31, 2012, respectively.

For second sample period, thresholds range from 2.00 to 2.64 for 
the lower tail and from 2.10 to 2.52 for the upper tail with few 
exceedances between 181 and 232 and 135 and 175, respectively. 
The number of exceedances is reasonable to model adequately the 
tail behavior of the distribution since it comprises between 5 and 
10% of the sample, which are in line with the simulation study 
from McNeil and Frey (2000). The estimated scale parameter σ is 
positive and statistically significant at the 5% level. The σ estimates 
vary remarkably under different thresholds for the upper tail of 
standardized residuals. This finding could be associated with the 
magnitude and frequency of positive extreme values. For lower tail 
of standardized residuals, the parameter estimates take values in a 
narrower range, albeit they are relatively greater than the ones in 
upper tail except for the CGARCH-EVT, ACGARACH2-EVT and 
FIEGARCH-EVT models. This fact can be attributed to a greater 
presence of negative extreme returns and dispersion among them, 
particularly during the COVID-19 pandemic period.

On the other hand, the value of the shape parameter ξ is positive 
and statistically significant different from zero at the 5% level, 
suggesting that lower and upper tails of standardized residuals for 
Isthmus crude oil are characterized by heavy-tail distributions for Ta
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two sample periods. An examination of the negative standardized 
residuals reveals that the shape parameter varies from 0.2439 
to 0.3113 for the period 1995-2012, and from 0.2713 to 0.3245 
for the period 1995-2016. Likewise, the shape parameter for the 
positive standardized residuals remains relatively stable and takes 
values from 0.1504 to 0.3808, and from 0.1707 to 0.2911. Another 
interesting finding is that the estimated shape parameters for 
negative standardized residuals are greater than the ones of positive 
standardized residuals under any volatility model for both sample 
periods except for EGARCH-EVT and ACGARCH1-EVT models. 
This fact implies that the lower tail is heavier and riskier than the 
upper tail. These findings lead to more conservative estimates of 
VaR and ES, particularly at extreme quantiles as shown in Panel 
A and B of Table 4. At quantiles of 99.5% and 99.9%, the upper 
tail risk of VaR and ES ranges from 2.82 to 4.21 and from 3.64 
to 6.08 for the period 1995-2012, and from 2.84 to 4.00 and from 
3.60 to 5.47 for the period 1995-2016, respectively. For the case 
of lower tail risk, estimated VaR and ES lie between 3.09 and 4.76 
and between 4.15 and 6.55 for the first sample period, and between 
3.03 and 4.72 and between 4.10 and 6.68 for the second sample 
period. These findings provide robust evidence that participants 
in the Isthmus crude oil market face risk of severe losses since 
the standardized residuals are found in the tails region of the 
conditional distribution, albeit results for the upper tail are not 
consistent with the stability of the shape parameters.

4.3. Backtesting Results of in-Sample VaR and ES 
Estimates
This section deals with backtesting results of the in-sample 
VaR and ES estimates under asymmetric CGARCH-EVT 
and FIGARCH-EVT approaches, which are compared to the 
performance of the benchmark models: GARCH-EVT approaches. 
To assess the accuracy of the risk measures, the in-sample VaR 
and ES forecasts are compared with actual returns from January 
2, 2013 to December 30, 2016, and from January 3, 2017 to 
December 31, 2020, totaling approximately 1000 observations 
for each of the sample periods.

Tables 5 and 6 report the P-values of the Kupiec´s (1995) LR test 
and the DQ test of Engle and Manganelli (2004) for the in-sample 
VaR and ES estimates ranging from 95% to 99.5% and for both short 
and long trading positions. Forecasting performance of a model is 
superior to alternative models when the P > 5% significance level. 
For the period 1995-2016, the P-values of the LR test for the long 
trading position confirm that the FIGARCH-EVT approach provides 
the best performance to estimate in-sample VaR for Isthmus crude oil 
at 95% quantile. For 97.5% and 99% quantiles, backtesting results 
reveal that most conditional-EVT approaches perform better than 
the FIEGARCH-EVT model. Based on the DQ test, all conditional 
EVT-based approaches fail to estimate well long position risk for 
lower quantiles. However, the GARCH-EVT and CGARCH-EVT 
model families provide the most reliable VaR forecasts at the 99.5% 
quantile. While FIGARCH-EVT and FIEGARCH-EVT approaches 
perform very well at 99.9% quantile, indicating that majority of VaR 
violations are independently distributed.

Regarding results for the short trading position, asymmetric 
CGARCH-EVT models provides the better forecasting at the Ta
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99.9% quantile under both LR and DQ tests. For the period 
1995-2016, backtesting results reveal that none of the conditional 
EVT-based models does not perform well especially at extreme 
quantiles, where they all do not pass successfully the LR and DQ 
tests for both short and long trading positions since VaR estimates 
are too conservative. The empirical evidence is not consistent with 
respect to the results of Youssef et al. (2015). This finding may 
be explained by the study period during the COVID-19 pandemic 
and by the presence of extreme price fluctuations in the crude oil 
market.

For the ES figure, backtesting results are reported in Table 6. 
The evidence reveals that all conditional EVT-based models 
fail to estimate the tail risk of the long trading position at any 
quantile except FIGARCH-EVT and FIEGARCH-EVT models 
for the 99.5% level, where they only jointly pass the LR and the 
DQ tests. Nevertheless, GARCH-EVT, ACGARCH2-EVT and 
FIGARCH-EVT approaches improve the forecasting performance 
for the short trading position at the 99.9% quantile. In relation to 
the forecasting performance, findings evidence that conditional 
EVT-based models considering stylized facts such as volatility 

Table 5: Backtesting results of the in-sample VaR estimates for conditional EVT-based models
Model Short position

0.950 0.975 0.990 0.995 0.999
LR DQ LR DQ LR DQ LR DQ LR DQ

Panel A: In sample VaR analysis for the period from January 2, 1995 to December 31, 2012 
GARCH-EVT 0.2325** 0.0000 0.1155** 0.0000 0.0006 0.0000 0.0093 0.0000 0.3927** 0.8007**
EGARCH-EVT 0.1783** 0.0000 0.1155** 0.0000 0.0013 0.0000 0.0236 0.0000 0.3927** 0.8007**
CGARCH-EVT 0.2325** 0.0000 0.2134** 0.0000 0.0006 0.0000 0.0004 0.0000 0.3927** 0.8007**
ACGARCH1-EVT 0.1783** 0.0000 0.2134** 0.0000 0.0006 0.0000 0.0001 0.0000 0.9825** 0.9994**
ACGARCH2-EVT 0.4568** 0.0000 0.2134** 0.0000 0.0013 0.0000 0.0553 0.0000 0.9825** 0.9994**
FIGARCH-EVT 0.3318** 0.0000 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
FIEGARCH-EVT 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel B: In sample VaR analysis for the period from January 2, 1995 to December 30, 2016
GARCH-EVT 0.0003 0.0000 0.4664** 0.0000 0.0932** 0.0000 0.0011 0.0000 0.0000 0.0000
EGARCH-EVT 0.0006 0.0000 0.9119** 0.0000 0.0932** 0.0000 0.0004 0.0000 0.0000 0.0000
CGARCH-EVT 0.0019 0.0000 0.7537** 0.0000 0.0932** 0.0000 0.0004 0.0000 0.0000 0.0000
ACGARCH1-EVT 0.0493 0.0000 0.1694** 0.0000 0.1600** 0.0000 0.0011 0.0000 0.0000 0.0000
ACGARCH2-EVT 0.2970** 0.0000 0.1528** 0.0000 0.0932** 0.0000 0.0004 0.0000 0.0000 0.0000
FIGARCH-EVT 0.2970** 0.0000 0.9119** 0.0000 0.0932** 0.0000 0.0004 0.0000 0.0000 0.0000
FIEGARCH-EVT 0.1338** 0.0000 0.2904** 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Model Long position
0.950 0.975 0.990 0.995 0.999

LR DQ LR DQ LR DQ LR DQ LR DQ
Panel A: In sample VaR analysis for the period from January 2, 1995 to December 31, 2012

GARCH-EVT 0.0010 0.0000 0.3471** 0.0000 0.4016** 0.0000 0.3104** 0.2276** 0.0000 0.0000
EGARCH-EVT 0.0336 0.0000 0.4664** 0.0000 0.4016** 0.0000 0.3104** 0.2276** 0.0000 0.0000
CGARCH-EVT 0.0223 0.0000 0.4664** 0.0000 0.1600** 0.0000 0.9609** 0.0882** 0.0000 0.0000
ACGARCH1-EVT 0.0704** 0.0001 0.7537** 0.0000 0.1600** 0.0000 0.9609** 0.0882** 0.0000 0.0000
ACGARCH2-EVT 0.0704** 0.0001 0.4664** 0.0000 0.1600** 0.0000 0.6087** 0.1827** 0.0000 0.0000
FIGARCH-EVT 0.7862** 0.0000 0.2004** 0.0000 0.0136 0.0000 0.0236 0.0000 0.9825** 0.0915**
FIEGARCH-EVT 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9825** 0.0915**

Panel B: In sample VaR analysis for the period from January 2, 1995 to December 30, 2016
GARCH-EVT 0.0001 0.0000 0.1104** 0.0001 0.4016** 0.0000 0.0236 0.0000 0.0000 0.0000
EGARCH-EVT 0.0033 0.0000 0.7537** 0.0000 0.2605** 0.0000 0.0236 0.0000 0.0000 0.0000
CGARCH-EVT 0.3719** 0.0000 0.4664** 0.0000 0.2605** 0.0000 0.0236 0.0000 0.0000 0.0000
ACGARCH1-EVT 0.8975** 0.0000 0.0400 0.0000 0.8086** 0.0000 0.0236 0.0000 0.0000 0.0000
ACGARCH2-EVT 0.3318** 0.0000 0.7537** 0.0000 0.2605** 0.0000 0.0236 0.0000 0.0000 0.0000
FIGARCH-EVT 0.0988** 0.0000 0.4664** 0.0000 0.2605** 0.0000 0.0236 0.0000 0.0000 0.0000
FIEGARCH-EVT 0.0743** 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table reports the P-values of the Kupiec test and the DQ test. Values in bold denote preferred model with the best forecasting performance. ** denotes significance at the 5% level

clustering, fat tails, long-run asymmetry and long-run persistence 
in the Isthmus crude oil series behavior improve the risk forecasts 
for short and long trading positions.

4.4. Backtesting for Out-of-Sample VaR and ES 
Forecasts
This section reports the out-of-sample forecasting performance 
of conditional EVT-based models over the periods from January 
02, 2013 to December 30, 2016, and from January 03, 2017 to 
December 31, 2020.

Backtesting results of out-of-sample VaR forecasts for short and 
long trading positions are provided in Table 7. It is worth noting 
that the out-of-sample forecasts are more robust than those 
of the in-sample analysis in terms of P-values that are highly 
acceptable. For the 2013-2016 period, both P-values show that 
the performance of the FIGARCH-EVT model is superior to the 
alternative models followed by ACGARCH2-EVT approach for 
the long trading position at any quantile. For the short trading 
position, asymmetric CGARCH-EVT models perform well 
estimating the upper tail risk in the Isthmus crude oil return series 
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Table 6: Backtesting results of the in-sample ES estimates for conditional EVT-based models
Model Short position

0.950 0.975 0.990 0.995 0.999
LR DQ LR DQ LR DQ LR DQ LR DQ

Panel A: In sample ES analysis for the period from January 2, 1995 to December 31, 2012 
GARCH-EVT 0.0033 0.0000 0.6033** 0.0000 0.9446** 0.0000 0.2367** 0.0000 0.9825** 0.9994**
EGARCH-EVT 0.0033 0.0000 0.6033** 0.0000 0.6954** 0.0000 0.4275** 0.0000 0.0000 0.0000
CGARCH-EVT 0.0000 0.0000 0.6033** 0.0000 0.9446** 0.0000 0.2367** 0.0000 0.0000 0.0000
ACGARCH1-EVT 0.0033 0.0000 0.6033** 0.0000 0.9446** 0.0000 0.4275** 0.0000 0.0000 0.0000
ACGARCH2-EVT 0.0033 0.0000 0.6033** 0.0000 0.9446** 0.0000 0.4275** 0.0000 0.9825** 0.9994**
FIGARCH-EVT 0.1783** 0.0000 0.2134** 0.0000 0.0516 0.0000 0.0553 0.0000 0.9825** 0.9994**
FIEGARCH-EVT 0.6799** 0.0000 0.0122 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

Panel B: In sample ES analysis for the period from January 2, 1995 to December 30, 2016
GARCH-EVT 0.0000 0.0000 0.0221 0.0000 0.4016** 0.0000 0.0236 0.0000 0.0000 0.0000
EGARCH-EVT 0.0000 0.0000 0.0401 0.0000 0.2605** 0.0000 0.0093 0.0000 0.0000 0.0000
CGARCH-EVT 0.0003 0.0000 0.2479** 0.0000 0.1600** 0.0000 0.0011 0.0000 0.0000 0.0000
ACGARCH1-EVT 0.0019 0.0000 0.9119** 0.0000 0.0932** 0.0000 0.0003 0.0000 0.0000 0.0000
ACGARCH2-EVT 0.0019 0.0000 0.6287** 0.0000 0.0272 0.0000 0.0003 0.0000 0.0000 0.0000
FIGARCH-EVT 0.0033 0.0000 0.4984** 0.0000 0.0065 0.0000 0.0001 0.0000 0.0000 0.0000
FIEGARCH-EVT 0.0141 0.0000 0.2904** 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Model Long position
0.950 0.975 0.990 0.995 0.999

LR DQ LR DQ LR DQ LR DQ LR DQ
Panel A: In sample ES analysis for the period from January 2, 1995 to December 31, 2012

GARCH-EVT 0.0000 0.0000 0.0055 0.0000 0.0015 0.3675** 0.0257 0.0882** 0.0000 0.0000
EGARCH-EVT 0.0000 0.0000 0.0055 0.0000 0.0015 0.3675** 0.0257 0.5668** 0.0000 0.0000
CGARCH-EVT 0.0000 0.0000 0.0221 0.0000 0.0015 0.3675** 0.0257 0.5668** 0.0000 0.0000
ACGARCH1-EVT 0.0000 0.0000 0.0221 0.0000 0.0075 0.2261** 0.0257 0.5668** 0.0000 0.0000
ACGARCH2-EVT 0.0000 0.0001 0.0221 0.0000 0.0015 0.3675** 0.0257 0.5668** 0.0000 0.0000
FIGARCH-EVT 0.0001 0.0000 0.2479** 0.0000 0.4681** 0.0000 0.1155** 0.7990** 0.0000 0.0000
FIEGARCH-EVT 0.4568** 0.0000 0.9119** 0.0000 0.1600** 0.0000 0.9609** 0.5668** 0.0000 0.0000

Panel B: In sample ES analysis for the period from January 2, 1995 to December 30, 2016
GARCH-EVT 0.0000 0.0000 0.0010 0.0000 0.9446** 0.0000 0.1195** 0.0000 0.0008 0.0000
EGARCH-EVT 0.0000 0.0000 0.0055 0.0000 0.8086** 0.0000 0.1195** 0.0000 0.0008 0.0000
CGARCH-EVT 0.0001 0.0000 0.0684 0.0000 0.8086** 0.0000 0.0553 0.0000 0.0001 0.0000
ACGARCH1-EVT 0.0055 0.0000 0.6033** 0.0000 0.2605** 0.0000 0.0236 0.0000 0.0000 0.0000
ACGARCH2-EVT 0.0091 0.0000 0.7537** 0.0000 0.2605** 0.0000 0.0236 0.0000 0.0000 0.0000
FIGARCH-EVT 0.0493 0.0000 0.4984** 0.0000 0.0932** 0.0000 0.0034 0.0000 0.0000 0.0000
FIEGARCH-EVT 0.8741** 0.0000 0.0198 0.0000 0.0030 0.0000 0.0011 0.0000 0.0000 0.0000

Table reports the P-values of the Kupiec test and the DQ test. Values in bold denote preferred model with the best forecasting performance. **denotes significance at the 5% level

Table 7: Backtest results of the out-of-sample VaR estimates for conditional EVT-based models
Model Short position

0.950 0.975 0.990 0.995 0.999
LR DQ LR DQ LR DQ LR DQ LR DQ

Panel A: Out of sample VaR analysis for the period from January 2, 2013 to December 30, 2016 
GARCH-EVT 0.7615** 0.0000 0.1528** 0.0000 0.2605** 0.0000 0.2367** 0.0000 0.9825** 0.9919**
EGARCH-EVT 0.0982** 0.0001 0.1067** 0.0000 0.2831** 0.0003 0.1155** 0.0000 0.9825** 0.9934**
CGARCH-EVT 0.6532** 0.0000 0.1067** 0.0000 0.1600** 0.0000 0.0553 0.0000 0.9825** 0.9922**
ACGARCH1-EVT 0.6532** 0.0002 0.1067** 0.0000 0.4016** 0.0000 0.6087** 0.9581** 0.9825** 0.9898**
ACGARCH2-EVT 0.9825** 0.0001 0.3853** 0.0000 0.6954** 0.0000 0.1155** 0.9612** 0.9825** 0.9948**
FIGARCH-EVT 0.0988** 0.0006 0.0002 0.0000 0.0033 0.0000 0.0553 0.0003 0.3927** 0.9896**
FIEGARCH-EVT 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1132** 0.2111**

Panel B: Out of sample VaR analysis for the period from January 3, 2017 to December 31, 2020
GARCH-EVT 0.0010 0.0384 0.0114 0.5621** 0.0685** 0.8894** 0.3104** 0.9912** 0.9825** 0.9999**
EGARCH-EVT 0.0005 0.0013 0.0401 0.1868** 0.0685** 0.8776** 0.3104** 0.9890** 0.9825** 0.9999**
CGARCH-EVT 0.0010 0.0774** 0.1684** 0.7834** 0.2831** 0.9998** 0.3104** 0.9903** 0.9825** 0.9999**
ACGARCH1-EVT 0.0010 0.0635** 0.0221 0.6477** 0.0257 0.7677** 0.6087** 0.9967** 0.9825** 0.9999**
ACGARCH2-EVT 0.0036 0.0072 0.0055 0.4612** 0.4681** 0.9923** 0.6087** 0.9963** 0.9825** 0.9999**
FIGARCH-EVT 0.0010 0.0774** 0.1684** 0.7612** 0.6974** 0.9991** 0.9609** 0.9945** 0.9825** 0.9999**
FIEGARCH-EVT 0.0144 0.0000 0.0043 0.0000 0.0136 0.0000 0.0011 0.0000 0.0258 0.0000

Model Long position
0.950 0.975 0.990 0.995 0.999

LR DQ LR DQ LR DQ LR DQ LR DQ
Panel A: Out of sample VaR analysis for the period from January 2, 2013 to December 30, 2016

GARCH-EVT 0.0982** 0.0000 0.1104** 0.0202 0.2831** 0.0013 0.1155** 0.6970** 0.9825** 0.9969**
EGARCH-EVT 0.2325** 0.0000 0.0684** 0.0012 0.1505** 0.0009 0.1155** 0.7303** 0.9825** 0.9987**

(Contd...)
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for extreme quantiles according to the LR and DQ tests. Despite 
there are several conditional EVT-based models performing 
well at highest quantiles. However, it should mention that the 
FIEGARCH-EVT model provides poor forecasting to estimate 
the extreme risk in Isthmus crude oil market.

Table 7: (Continued)
Model Long position

0.950 0.975 0.990 0.995 0.999
LR DQ LR DQ LR DQ LR DQ LR DQ

CGARCH-EVT 0.1673** 0.0003 0.7537** 0.0214 0.4681** 0.0025 0.3104** 0.0000 0.9825** 0.9949**
ACGARCH1-EVT 0.3719** 0.0544 0.3471** 0.0112 0.2831** 0.0002 0.3104** 0.1274** 0.9825** 0.9949**
ACGARCH2-EVT 0.2325** 0.0645** 0.0684** 0.0014 0.2831** 0.0003 0.1155** 0.7190** 0.9825** 0.9964**
FIGARCH-EVT 0.5801** 0.1590** 0.9119** 0.4312** 0.2605** 0.2055** 0.9609** 0.1287** 0.3927** 0.1673**
FIEGARCH-EVT 0.0000 0.0000 0.0000 0.0000 0.0272 0.0000 0.4275** 0.0000 0.3927** 0.0601**

Panel B: Out of sample VaR analysis for the period from January 3, 2017 to December 31, 2020
GARCH-EVT 0.0553 0.0000 0.2134** 0.3426** 0.0516 0.0630 0.0553 0.0000 0.1132** 0.6931**
EGARCH-EVT 0.0551 0.0034 0.0313 0.0013 0.0932** 0.0576 0.0236 0.0000 0.0048 0.0000
CGARCH-EVT 0.9895** 0.0319 0.1067** 0.6963** 0.0065 0.0310 0.0236 0.0000 0.1132** 0.7266**
ACGARCH1-EVT 0.8741** 0.9112** 0.2134** 0.7311** 0.1250** 0.1016** 0.1719** 0.7862** 0.3927** 0.9812**
ACGARCH2-EVT 0.6799** 0.5549** 0.0313 0.0841** 0.0272 0.0003 0.0236 0.0000 0.0048 0.0000
FIGARCH-EVT 0.5801** 0.5284** 0.0074 0.1993** 0.0005 0.0003 0.0011 0.0000 0.0007 0.0000
FIEGARCH-EVT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table reports the P-values of the Kupiec test and the DQ test. Values in bold denote preferred model with the best forecasting performance. ** denotes significance at 5% level

Table 8: Backtesting results of the out-of-sample ES estimates for conditional EVT-based models
Model Short position

0.950 0.975 0.990 0.995 0.999
LR DQ LR DQ LR DQ LR DQ LR DQ

Panel A: Out sample ES analysis for the period from January 2, 2013 to December 30, 2016
GARCH-EVT 0.0000 0.0000 0.0010 0.0000 0.0015 0.4624** 0.0257 0.8317** 0.0000 0.0000
EGARCH-EVT 0.0000 0.0000 0.0000 0.0002 0.0001 0.2933** 0.0257 0.8334** 0.0000 0.0000
CGARCH-EVT 0.0000 0.0000 0.0010 0.0000 0.0075 0.5082** 0.1155** 0.9600** 0.0000 0.0000
ACGARCH1-EVT 0.0001 0.0000 0.0010 0.0000 0.0015 0.4624** 0.1155* 0.9607** 0.9825** 0.9799**
ACGARCH2-EVT 0.0000 0.0000 0.0010 0.0000 0.0015 0.4624** 0.0237 0.8351** 0.0000 0.0000
FIGARCH-EVT 0.0055 0.0063 0.1694** 0.0123 0.0015 0.0081 0.6087** 0.9994** 0.0000 0.0000
FIEGARCH-EVT 0.7615** 0.0000 0.7383** 0.0000 0.5860** 0.0003 0.4275** 0.0000 0.0000 0.0000

Panel B: Out of sample ES analysis for the period from January 2, 1995 to December 30, 2020
GARCH-EVT 0.0000 0.0000 0.0000 0.0048 0.0075 0.6254** 0.0257 0.8517** 0.9825** 0.9999**
EGARCH-EVT 0.0000 0.0000 0.0000 0.0092 0.0015 0.4545** 0.1125** 0.9522** 0.9825** 0.9999**
CGARCH-EVT 0.0000 0.0000 0.0000 0.0171 0.0075 0.6239** 0.0257 0.8525** 0.9825** 0.9999**
ACGARCH1-EVT 0.0000 0.0000 0.0000 0.0092 0.0075 0.6252** 0.0257 0.8552** 0.9825** 0.9999**
ACGARCH2-EVT 0.0000 0.0000 0.0000 0.0175 0.0015 0.4555** 0.0257 0.8530** 0.9825** 0.9999**
FIGARCH-EVT 0.0000 0.0000 0.0000 0.0322 0.0075 0.6209** 0.0257 0.8508** 0.9825** 0.9999**
FIEGARCH-EVT 0.0000 0.0000 0.0684** 0.0000 0.8086** 0.0000 0.7009** 0.0000 0.3927** 0.4655**

Model Long position
0.950 0.975 0.990 0.995 0.999

LR DQ LR DQ LR DQ LR DQ LR DQ
Panel A: Out sample ES analysis for the period from January 2, 2013 to December 30, 2016

GARCH-EVT 0.0000 0.0000 0.0000 0.0003 0.0016 0.3277** 0.1155** 0.6956** 0.9825** 0.9955**
EGARCH-EVT 0.0000 0.0000 0.0000 0.0042 0.0016 0.3403** 0.0250 0.8425** 0.0000 0.0000
CGARCH-EVT 0.0000 0.0000 0.0000 0.0017 0.0016 0.3228** 0.1155** 0.6823** 0.9825** 0.9934**
ACGARCH1-EVT 0.0000 0.0000 0.0000 0.0009 0.0016 0.3341** 0.1155** 0.7139** 0.9825** 0.9948**
ACGARCH2-EVT 0.0000 0.0000 0.0000 0.0000 0.0016 0.3370** 0.0831** 0.8374** 0.9825** 0.9971**
FIGARCH-EVT 0.0000 0.0000 0.0001 0.0453 0.0016 0.3091** 0.1155** 0.6438** 0.9825** 0.9990**
FIEGARCH-EVT 0.0091 0.0004 0.0685** 0.0000 0.0685** 0.0000 0.1155** 0.7317** 0.9825** 0.9998**

Panel B: Out of sample ES analysis for the period from January 2, 1995 to December 30, 2020
GARCH-EVT 0.0000 0.0301 0.0401 0.3773** 0.4681** 0.0025 0.9609** 0.0000 0.9825** 0.9989**
EGARCH-EVT 0.0000 0.0431 0.0221 0.2436** 0.6954** 0.0024 0.7009** 0.2254** 0.9825** 0.9990**
CGARCH-EVT 0.0000 0.0425 0.0221 0.3393** 0.2831** 0.0006 0.7009** 0.0000 0.9825** 0.9989**
ACGARCH1-EVT 0.0000 0.0205 0.0114 0.2126** 0.1505** 0.0000 0.6087** 0.8656** 0.0000 0.0000
ACGARCH2-EVT 0.0001 0.0423 0.0401 0.0983** 0.4681** 0.0007 0.9609** 0.1315** 0.9825** 0.9972**
FIGARCH-EVT 0.0011 0.1453** 0.3471** 0.7995** 0.9446** 0.1124** 0.4275** 0.0791** 0.3929** 0.9856**
FIEGARCH-EVT 0.3719** 0.6419** 0.7774** 0.1033** 0.0516 0.0000 0.0236 0.0000 0.0007 0.0000

Table reports the P-values of the Kupiec test and the DQ test. Values in bold denote preferred model with the best forecasting performance. **denotes significance at 5% level

For out-of-sample analysis over the 2017-2020 period, the 
ACGARCH1-EVT model provides the most stable and highest 
P-values of the LR and DQ tests for the long trading position 
under any confidence level. For the short trading position, the 
predictive power of FIGARCH and CGARCH-EVT approaches is 
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statistically superior estimating the out-of-sample VaR under any 
quantile. In fact, it is worth mentioning that several conditional 
EVT-based models are highly effective to estimate the upper 
tail risk at quantiles >97.5%. However, the FIEGARCH-EVT 
model continues to provide the worst performance for both short 
and long trading positions. Its performance is even worse than 
GARCH-EVT and EGARCH-EVT models under the LR and 
DQ tests. These findings no are in line with the results of Youssef 
et al. (2015) and Zhao et al. (2019). This result may be explained 
by the different analysis periods.

Table 8 reports backtesting results of out-of-sample ES forecasting 
for short and long trading positions. For the 2013-2016 period, 
results reveal that the forecasting performance of the most 
conditional EVT-based models improves to estimate the tail 
risk of short and long trading positions for quantiles over than 
97.5%, especially under the DQ test. For the 2017-2020 period, 
the results are similar for the short trading position. However, the 
P-values of the LR and DQ tests show that the FIGARCH-EVT 
model still performs well in predicting the out of sample ES for 
the long trading position under any confidence level. Finally, our 
findings are useful for risk managers and investors to improve risk 
management and hedging strategies when the Isthmus oil market 
volatility increases in unstable economic and financial periods. 
Thus, we show the importance of stylized volatility features such 
as asymmetry, volatility clustering, long range memory and fat tails 
for measuring tail risk based on VaR and ES estimates, particularly 
during the COVID-19 crisis.

5. CONCLUSION

Crude oil returns exhibit the presence of fat tails, heteroscedasticity, 
asymmetry, and long memory. Accordingly, this paper adopts 
CGARCH and FIGARCH models under normal distribution to 
capture mayor stylized facts in the return volatility of Isthmus 
crude oil market. Additionally, McNeil and Frey (2000) approach 
based on extreme value theory is extended to evaluate and improve 
the in-sample and out-of-sample VaR and ES estimates for the 
short and long trading positions. Backtesting results provide 
robust evidence that the FIGARCH-EVT model provides the 
most accurate out-of-sample VaR forecasts for both short and long 
trading positions, followed by CGARCH-EVT and ACGARCH1-
EVT models. Still the most symmetric and asymmetric CGARCH 
models along with conventional GARCH models only perform 
well at extreme quantiles. The FIGARCH-EVT model still 
performs well in estimating the ES. This result suggests that the 
ES should be considered as a sound alternative risk measure to 
overcome the deficiencies of VaR. Our findings have important 
implications for producers, consumers, portfolio investors, and 
policy makers. Since the conditional EVT-based models can 
capture the heteroscedasticity, asymmetry, and long memory, as 
well as explicitly modeling the tail behavior of distribution, they 
could improve risk assessment and management. In addition, 
an accurate estimation of risk level will allow to develop more 
effective hedging strategies for diminishing oil price risk exposure 
from Isthmus crude oil market participants, particularly the 
Mexican Federal Government which depends on the high crude 
oil prices to maintain sound public finance.
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