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ABSTRACT

This research develops a new electric charge prediction method by using Convolutional Neural Networks with Quantile Regression (CNN-QR) combined 
with the Rainbow Technique for Categorical Features (RTCF) and using Deep Learning to create layers for the architecture of the neural network. This 
combination captures both local and global interdependencies within the load data. In particular, RTCF employs advanced natural language processing 
(NLP) techniques to convert several important categorical features into a single feature called “category,” which is tailored to the various attributes 
of the Baja California Sur system, in Mexico, taking into consideration climatic conditions, local circumstances and a significant increase in energy 
consumption. Furthermore, this research compares CNN-QR with classical quantile regression and shows that CNN-QR works better at capturing 
sophisticated load patterns and producing probabilistic estimates. The above methodology uses hourly data from January 2019 to October 2020. The 
results obtained provide valuable information for policy formulation in the energy sector, specifically in the areas of load forecasting and expansion 
of renewable energy and electricity consumption. Finally, it is worth mentioning that the utilization of CNN-QR with RTCF not only improves the 
accuracy of load forecasting, but also provides a strategic framework for energy management and resource planning in dynamic energy systems, which 
demonstrates its substantial importance for market participants and authorities, as well as regulators.

Keywords: Electric Load Forecasting, Convolutional Neural Networks, Quantile Regression, Rainbow Technique for Categorical Features, Deep 
Learning 
JEL Classification: C45, Q41, Q47, L94

1. INTRODUCTION

Electrical load forecasting is a crucial aspect of energy management 
that plays a central role in optimizing resource allocation and 
maintaining grid stability. Amid the increasing incorporation 
of renewable energy sources and the unpredictable nature of 
electricity demand, the need for robust and reliable forecasting 
methods has become extremely important (He, 2017). This study 
aims to satisfy this urgent requirement by proposing an innovative 
method combining Convolutional Neural Networks with Quantile 
Regression (CNN-QR) for electric load forecasting. Furthermore, 
this work presents the integration of the Rainbow Technique for 

Categorical Features (RTCF), a novel method aimed at improving 
forecast accuracy through categorical features.

Although widely used in load forecasting, traditional quantile 
regression algorithms provide probabilistic estimates at different 
quantile levels, but generally fail to capture the complex 
spatiotemporal patterns present in load data (He et al., 2020). 
In contrast, CNN have demonstrated an exceptional ability to 
recognize intricate patterns. Expanding on these characteristics, we 
emphasize that the CNN-QR approach combines the capabilities of 
CNN with Quick Response (QR) codes, resulting in a model that 
effectively replicates electrical charging patterns. Our proposal, 
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designed specifically for the Baja California Sur (BCS) system, 
in Mexico, effectively captures local and global links in the data, 
resulting in a substantial improvement in prediction accuracy.

Incorporating the RTCF in our research is used to produce 
categorical features. This technique aims to combine various 
category elements into a single organized entity through a 
harmonization process. The RTCF improves our model by 
incorporating many category features from multiple points of view, 
providing a more complex and comprehensive understanding of 
the fundamental patterns that influence load forecasting (Reda, 
2023). Finally, Deep Learning (DL) is used to create layers for 
the neural network and configure the complex architecture of the 
neural network for the BCS system.

The Mexican BCS system presents significant obstacles to effective 
load forecasting due to its distinctive characteristics, such as varied 
weather conditions and rapidly increasing energy demand. The 
goal of our research is to demonstrate the capabilities of CNN-
QR to decipher complex loading patterns and provide extremely 
accurate probabilistic forecasts, particularly in comparison to 
conventional quantile regression techniques.

The main objective of this research is to analyze the performance 
of CNN-QR in electric load prediction. Additionally, the 
consequences of including the RTCF as a means of producing 
categorical features will be performed. This article aims to 
highlight the substantial improvements achieved by combining 
CNN-QR with RTCF using DL. This combination will not only 
show outstanding performance, but also confirm the effectiveness 
of the proposed methodology. This approach represents a 
substantial advance in the dynamic and intricate field of electrical 
load forecasting, providing crucial information to decision makers 
and stakeholders in the energy sector, facilitating better energy 
management and resource planning in complex energy systems.

The next sections of this investigation are organized as follows: 
section 2 presents a short review of the specialized literature, 
with specific emphasis on load forecasting approaches, quantile 
regression, convolutional neural networks, and feature creation 
methods; section 3 highlights the importance of load forecasting 
within a decentralized grid system while renewable energy 
generation continues to expand; section 4 provides a summary 
of the data gathering procedure and the categorical features; 
section 5 gives a comprehensive discussion on the specific steps 
and methods involved in the application of the RTCF; section 6 
outlines the structure of the CNN-QR model; section 7 measures 
the effectiveness of the proposal and discusses the results obtained; 
and, finally, section 8 gives the conclusions.

2. LITERATURE REVIEW

This section provides a brief review of research in three critical 
domains: QR, CNN, and RTCF. First, QR has become increasingly 
popular in load forecasting because it can accurately represent 
the entire distribution of the target variable. This resource offers 
valuable data on several quantiles, allowing both central tendencies 
and extreme values to be estimated.

Most research has shown that quantile regression is effective in load 
forecasting. For the purpose of modeling positive asymmetrically 
distributed income data, the QR models are effective. These models 
provide practical statisticians and econometricians with significant 
insights (Saulo et al., 2023). For instance, Shi et al. (2021) use 
QR to forecast wind power probabilistically, demonstrating 
its ability to accurately represent uncertainty. Likewise, Guan 
et al. (2020) apply Gaussian process QR to achieve precise and 
resilient forecasts for probabilistic short-term load forecasting. 
Finally, Wang et al. (2019) develop a method using QR taking 
into account robustness, hence improving the effectiveness of 
load forecasting models.

On the other hand, CNN initially designed for image processing 
applications have proven to be effective in load forecasting 
because of its capacity to detect spatial and temporal patterns. 
These DL models have demonstrated potential in extracting 
pertinent characteristics and capturing intricate connections in load 
data. Multiple research projects have investigated the utilization 
of CNN in load forecasting. In order to improve the accuracy 
of traffic forecasting and real-time performance, the Dynamic 
Spatial-Temporal Adjacent Graph Convolutional Network 
(DSTAGCN) is able to efficiently capture the dynamic spatial-
temporal dependencies that are present in traffic data (Zheng 
and Zhang, 2023). Likewise, Jin et al. (2021) develop an electric 
load forecasting model utilizing a DL network, showcasing the 
efficacy of CNN in accurately capturing load patterns. In this 
sense, Rafi et al. (2021) propose a convolutional long short-term 
memory neural network for load forecasting, which effectively 
combines the advantageous categorical features of CNN and 
recurrent neural networks. Finally, He et al. (2020) employed 
a 1-Dimensional convolutional neural network for day-ahead 
electric load forecasting, attaining precise and efficient forecasts.

Categorical Feature Generation Methods seek to improve the 
accuracy of load forecasting by extracting pertinent information 
or modifying the original characteristics. These approaches are 
capable of capturing seasonal patterns, trends, and other significant 
features of load data. Several studies have investigated techniques 
for generating categorical features in order to forecast load. 
The utilization of historical weather data in the proposed multi-
feature data fusion technique improves the precision of electric 
car charging station load (Aduama et al., 2023). In this sense, 
Yao et al. (2000) perform the short-term load forecasting using a 
combination of wavelet transform and least squares support vector 
machine, which were optimized by an enhanced search method. 
Similarly, Shah et al. (2019) use singular spectrum analysis and 
support vector regression to accurately predict electric load, 
thereby capturing inherent patterns. Finally, Platten et al. (2020) 
apply statistical machine learning techniques to precisely estimate 
the energy efficiency of residential structures, emphasizing the 
effectiveness of feature generating approaches.

On the other hand, contemporary literature has integrated CNN 
with QR in load forecasting, capitalizing on the respective 
advantages of both methodologies. An effective improvement 
in load forecasting accuracy is achieved by the utilization of the 
proposed short-term power load forecasting approach (Wang and 
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Li, 2023). Also, Bracale et al. (2020) suggest a novel approach 
that integrates CNN with QR to enhance the accuracy of time 
series forecasting. Similarly, Zhang et al. (2019) develop a CNN 
model that uses QR to forecast short-term traffic flow. Likewise, 
Shi et al. (2018) applied a CNN based method for enhancing the 
resolution of magnetic resonance images using QR. These studies 
demonstrate the amalgamation of CNN with QR, exhibiting 
enhanced predictive accuracy in many fields.

The references offered provide a comprehensive and extensive 
summary of the literature on electrical load forecasting approaches 
covering CNN, QR, and RTCF. These tools are important for load 
forecasting, as shown below.

3. THE IMPORTANCE OF LOAD 
FORECASTING IN A DECENTRALIZED 

GRID SYSTEM WITH RENEWABLE 
ENERGY GROWTH

Mexico’s energy sector is currently experiencing a significant 
change as it moves towards decentralized grid systems, 
accompanied by a strong effort to incorporate renewable energy 
sources. Mexico’s Energy Transition Law supports this shift, with 
the goal of achieving a high percentage of electricity generation 
from renewable energy sources by 2024 (Enciso-Chávez, 2019). 
This growth represents both a broadening of energy sources and 
the emergence of new factors in energy management; decentralized 
renewable sources, including solar, wind, and hydro, will take a 
more crucial role.

3.1. The Increasing Popularity of Renewable Energy in 
Mexico
Following the decentralization of Mexico’s power market in 
2014, there has been a significant increase in the capacity of 
renewable energy. As of 2022, the total power generation capacity 
of environmentally friendly energy plants exceeded 31,000 MW. 
This demonstrates a steady increase in capacity each year and 
highlights the country’s dedication to adopting sustainable energy 
practices (Dieck-Assad and Carbajal-Huerta, 2017).

Figure 1 shows the proportion of energy generation derived 
from renewable sources in Mexico, showing its importance of 
the market decentralization that took place in 2014. Since 2014, 
there has been a noticeable and consistent increase, indicating 
the successful results of policy reforms and the growing ability 
of renewable energy sources to contribute to the national power 
supply. This development is evidence of Mexico’s dedication to 
increasing its renewable energy sector.

The increase in renewable energy generation is attributed to 
various factors, such as legislative incentives, technological 
progress, increase in CO2 emissions, and a societal transition 
towards more sustainable and environmentally friendly energy 
sources. The graph not only depicts these variables, but also 
illustrates Mexico’s energy reform’s progressive nature and its 
successful advancement towards a more environmentally friendly 
future.

With respect to the significant increase in CO2 emissions in 
Mexico, it is also necessary take immediate actions to improve 
environmental quality. Despite the awareness in Mexico that the 
increase in CO2 emissions derived from industrial development 
(energy, transportation, construction, agriculture, etc.) is strongly 
linked to the consumption of non-renewable energy, few 
efforts have yet been made to achieve an energy transition each 
environmental stability (Mendoza-Rivera et al., 2023; Salazar-
Núñez et al., 2020; 2022; Santillán-Salgado et al., 2020; Valencia-
Herrera et al., 2020).

3.2. Obstacles in Predicting Power Demand for 
Distributed Power Systems
The decentralized grid, which consists of a combination of 
large-scale and dispersed generation, has distinct issues for load 
forecasting. Advanced forecasting approaches are required to 
handle the sporadic and fluctuating characteristics of renewable 
sources, such as solar and wind, which experience rapid variations 
in energy output and consumption patterns. Moreover, the 
growing number of small-scale renewable projects, motivated 
by the escalating power expenses and the need for dependable 
energy, introduces additional intricacies to energy management 
(Sultanuddin et al., 2022).

3.3. The Significance of forecasting in Maintaining 
Grid Stability and Efficiency
Accurate load forecasting is crucial for maintaining grid stability 
and operating efficiency in this decentralized environment 
with abundant renewable resources. It facilitates the efficient 
equilibrium of supply and demand, hence reducing the likelihood 
of power interruptions and minimizing energy inefficiency. 
Precise predictions are crucial for maximizing the allocation of 
renewable energy, diminishing dependence on fossil fuels, and 
guaranteeing a regular and dependable electricity provision (Raza 
et al., 2018).

3.4. Advancements in Technology for Predicting Load 
Demand
To address these difficulties, the energy industry in Mexico is 
utilizing state-of-the-art technologies in load prediction. The 
utilization of AI, machine learning, and big data analytics is 

Figure 1: Mexican share of electricity production from renewable 
energy

Source: Own elaboration with data from OurworldData.org/energy and 
Ember’s Yearly Electricity Data (2022)
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growing in order to improve the precision and agility of forecasting 
models. These technologies enable the immediate processing and 
analysis of extensive datasets, enhancing the ability to estimate 
energy demand in a grid system that is abundant in renewable 
sources (Lakshminarayanan et al., 2021).

3.5. Implications for Policy and the Economy
Precise prediction plays a crucial role in developing energy 
regulations and directing investments in Mexico’s electricity 
sector. It has a crucial role in decision-making processes 
concerning grid expansion, infrastructure upgrades, and the 
incorporation of new technologies. Furthermore, forecasting 
facilitates the synchronization of energy output with Mexico’s 
overarching economic and environmental objectives, such as 
reducing emissions and advancing the adoption of electromobility 
(Fan et al., 2019).

As Mexico further embraces renewable energy in its decentralized 
infrastructure, the importance of load forecasting becomes more 
prominent. This forecasting is essential for guaranteeing effective 
energy management, upholding grid stability, and facilitating the 
nation’s shift towards a sustainable energy future. Precisely forecasting 
electricity demand is not just a technical requirement, but also a 
strategic advantage that impacts all aspects of energy sector activities, 
ranging from policy development to daily grid administration.

4. NATURE OF THE DATA

This section presents a summary of the data utilized in the study, 
which was gathered from the BCS system. The dataset contains 
chronological records of electricity usage for every hour between 
January 01, 2019 and September 30, 2020. The National Energy 
Control Center (CENACE, the Spanish acronym for Centro 
Nacional de Control de la Energía) provides the data on electric 
demand or load and Local Marginal Price (LMP). Table 1 displays 
the information on the attributes utilized from the BCS System 
Dataset for load forecasting.

The load forecasting dataset comprises 15,336 observations. The 
variable Total_Demand reflects the aggregate power consumption 
per hour, measured in Megawatt-hours (MWh). A separate 
variable, Average_Pml, quantifies the mean value of the local 
LMP for the hour.

The dataset contains various nominal variables, including 
Day_week, Day_of_month, Month, Year, and Hour_of_day. The 
variable “Day_week” represents the day of the week, ranging from 
Monday to Sunday. The variable “Day_of_month” represents the 
day of the month, ranging from 1 to 31. The variable “Month” 
represents the month, ranging from January to December. The 
variable “Year” represents the year, which can be either 2019 or 
2020. Finally, the variable “Hour_of_day” represents the hour of 
the day, ranging from 0 to 23.

The dataset additionally includes two temperature-related 
variables, namely CDD (Cooling Degree Days) and HDD 
(Heating Degree Days). CDD denotes the quantity of cooling 
degree days for the hour, which quantifies the amount of cooling 
needed during the summer months. HDD stands for heating 
degree days, a metric that quantifies the amount of heating needed 
during winter months. These factors are frequently employed in 
the energy sector to estimate energy demand and can be valuable 
for energy planning, weather prediction, architectural design, 
and energy efficiency studies. Furthermore, the dataset contains 
two binary variables, namely Season and Holiday. The Season 
variable denotes whether the hour falls within the dry season 
(November to April) or the wet season (May to October). The 
Holiday variable denotes the presence or absence of a holiday 
on a certain day.

The dataset comprises a total of 18 variables and 15,335 
observations. The dataset was divided into a training set 
and a testing set using an 80/20 ratio. As a consequence, 
the test and validation sets consist of 3067 observations. 
Finally, this dataset offers a comprehensive and diverse range 
of data for load forecasting analysis. It includes numerous 
elements such as power demand, marginal pricing, temporal 
aspects, temperature-related variables, seasonality, and 
holiday effects.

5. RAINBOW TECHNIQUE FOR 
CATEGORICAL FEATURES

This section outlines the utilization of the RTCF approach on the 
categorical variables to produce a consolidated feature named 
“Category.” The RTCF approach utilizes various categorical 
factors, such as Day of the “Week-Month-Season-Holiday-Hour” 
to generate phrases that represent the varied combinations. As an 
illustration, a sentence might read “Tuesday-January-Low-No-
one.”

In order to implement the RTCF approach, we begin by 
amalgamating the categorical variables to construct these phrases. 
Subsequently, we find that there are only 2537 distinct sentences 
present in the feature. We calculate the total number of occurrences 
for each sentence, with the maximum frequency being 20. Within 
the sentences that occur most frequently, there are four distinct 
sentences: “Sunday-March-Low-Holiday-one,” “Thursday-
January-Low-Holiday-one,” “Wednesday-July-High-Holiday-
one,” and “Saturday-August-High-Holiday-one.” Subsequently, 
we examine the correlation between these statements and the 

Table 1: Categorical features used in load forecasting 
from the BCS system dataset
Feature Data type Number of values Unique values
Total_Demand Real 15,336  
Average_Pml Real 15,336  
Day_week Nominal 7 7
Day_of_month Nominal 31 31
Month Nominal 12 12
Year Nominal  2
Hour_of_day Nominal 24 24
CDD Real 15,336  
HDD Real 15,336  
Season Binary 2 2
Holiday Binary 2 2
Source: Own elaboration with electrical load data from the BCS system
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load. Under this framework, it is observed that the sentence with 
the lowest load has a frequency of 1. This sentence, “Saturday-
April-Low-No-one,” is related with a load of 166.75 MW. This 
sentence is categorized as label 0. Likewise, we attribute the phrase 
“Tuesday-August-High-Holiday-seventeen” to the peak demand, 
which reached a magnitude of 500.81 MW. Due to its repeated 
occurrence in the feature, we designate this statement with the 
category label 2536.

In order to include the RTCF approach into our research, we 
generate a Python dictionary and combine it with the load 
dataframe using the Pandas package. In addition, we investigate 
the correlation between load and various quantiles. Table 2 displays 
the load values for different quantiles, spanning from the 10th to the 
95th percentiles. The load values corresponding to each quantile 
are shown in Table 2.

In addition, we analyze the connections between load and other 
characteristics for the 50th percentile using the CNN-QR in order 
to predict the outcomes. The correlation matrices for each quantile, 
specifically highlighting the 10%, 30%, 50%, 70%, and 90% 
quantiles, as well as CDD, HDD, Average PML and the feature 
created using the RTCF approach (referred to as Category) are 
presented in Table 3.

Based on the correlation matrices, it is evident that the Category 
feature obtained using the RTCF approach is the most significant 
feature for all quantiles, except the 10% quantile. Moreover, the 
RTCF enables the efficient representation of categorical variables 
in a single feature, offering important insights into their correlation 
with the load. The Category characteristic holds substantial 
significance across different quantiles, underscoring its value for 
load forecasting analysis.

6. CONVOLUTIONAL NEURAL NETWORK-
QUANTILE REGRESSION (CNN-QR) AND 

DEEP LEARNING

This section offers an elaborate description CNN-QR for load 
forecasting using Deep Learning. The architecture training method 
of the model is outlined as follows:

a. Model Architecture: The model is built using the Deep 
Learning Sequential.

b. Application Programming Interface provided by the Keras 
toolkit.1 The process commences with a Conv1-Dimensional 
layer that executes 1-dimensional convolution on the incoming 
data. The layer is composed of 128 filters with a kernel size 
of 3 and employs the ReLU activation function.

 Pooling Layer: After the convolutional layer, a MaxPooling1-
Dimensional layer is added with a pool size of 2. This layer 
performs spatial dimension reduction on the output, thereby 
down sampling the characteristics extracted by the preceding 
layer. The purpose of the Flattening Layer is to transform the 
2-dimensional output of the pooling layer into a 1-dimensional 
vector. This transformation pre-processes the data to be used 
in the following fully connected layers.

c. The flattened output is subsequently transmitted over two 
completely linked (dense) layers. The initial dense layer is 
composed of 128 units and employs the Rectified Linear 
Unit (ReLU) activation function. In addition, it utilizes L2 
regularization with a coefficient of 0.001. The second dense 
layer contains a number of units that corresponds to the length 
of the quantiles array, which indicates the number of quantiles 
to be forecasted.

d. A Dropout layer is incorporated after the fully connected 
layers to address over-fitting. This layer employs a stochastic 
process to selectively deactivate a portion (specifically, 0.5) 
of the input units during training, therefore mitigating the 
network’s overreliance on particular links.

e. The output layer consists of a dense layer with a number of 
units equal to the length of the quantiles array. This enables 
the model to generate predictions for multiple quantiles. The 
absence of an activation function in this layer allows it to 
produce unprocessed predictions.

f. The quantile loss function is a mathematical function 
used to measure the deviation between predicted and 
actual values at a specific quantile level. A user-specified 
loss function named quantile_loss is defined. The input 
parameters for this function include the quantile value 
(q), the genuine target values (y), and the anticipated 
values (pred). The quantile loss is computed to quantify 
the discrepancy between the anticipated quantile and the 
true target value. The function is designed to process 
computations in batches and outputs the average loss for 
each batch.

g. Model Compilation: The model is compiled utilizing the 
Adam optimizer, with a learning rate of 0.00001. The loss 
function is defined by utilizing a lambda function that calls 
the quantile_loss function with the specific quantile value 
(quantiles [0] in this instance).

1  Keras toolkit. Available at: https://pypi.org/project/keras-toolkit/

Table 2: Load by quantiles
Load Quantile (%)
209.38 10
252.34 30
286.53 50
347.92 70
419.13 90
Source: Own elaboration with electrical load data from the BCS system.

Table 3: Correlation matrices by quantile
Variable Load, Quantile 10% Load, Quantile 30% Load, Quantile 50% Load, Quantile 70% Load, Quantile 90%
CDD 0 1 10 56 18
HDD −4 2 −6 −27 −2
Average PML 29 16 17 21 23
Category 11 28 28 58 60
Source: Own elaboration with electrical load data from the BCS system
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h. Model Training: The model undergoes training using the fit 
approach. The training data, consisting of X_train and y_train, 
is modified in order to align with the input shape required 
by the model. The training process consists of 300 epochs, 
with each epoch processing a batch size of 4. A validation 
split of 0.2 is used to assess the model’s performance on a 
separate validation set while it is being trained. The training 
process can be stopped early using an early stopping callback 
(early_stopping) if the validation loss does not show any 
improvement.

The CNN-QR architecture encompasses convolutional, pooling, 
and fully connected layers, in addition to dropout regularization 
and a proprietary quantile loss function. The system is specifically 
tailored for load forecasting and its objective is to anticipate 
numerous quantiles concurrently, offering a comprehensive and 
precise assessment of the load.

7. MEASURING THE EFFECTIVENESS OF 
CNN-QR

This section provides a description of the experimental design 
and assessment criteria employed to evaluate the effectiveness 
of CNN-QR and standard Quantile Regression (QR) techniques 
on eight quantiles: 10%, 30%, 50%, 70%, and 90%. In order 
to carry out QR, we employed the statsmodels package, which 
enables the fitting of distinct quantile regression models for each 
specified quantile and offers model summaries for examination 
of the results.

The processed data frame comprises a single label, Demand, 
and four categorical features: CDD, HDD, Average PML, and 
Category. In order to divide the dataset into training and testing 

sets, we adhered to an 80/20 ratio. The implementation of QR 
was carried out utilizing the Statsmodels library. The estimations 
obtained through QR are provided below. The average quantile loss 
for each model on the test set is shown in the Quantile Regression 
column of Table 4.

Table 4 presents a juxtaposition of quantile loss values for various 
quantiles, comparing the CNN-QR and QR approaches. The 
relative disparity between the two methods is also computed. The 
summary of findings is as follows:
a. CNN-QR obtains a quantile loss of 8.84 at the 10% quantile, 

while QR yields a quantile loss of 39.00. The comparative 
disparity between the two approaches is -77%, signifying 
a notable enhancement in performance of CNN-QR in 
comparison to Quantile Regression for this specific quantile.

b. CNN-QR obtains a quantile loss of 19.02 at the 30% quantile, 
whereas QR has a quantile loss of 25.01. In this case, the 
percentage change is a negative 24%.

c. CNN-QR achieves a quantile loss of 11.08 for the 50% 
quantile (median), whereas Quantile Regression yields a 
quantile loss of 21.50. As it can be seen, the percentage 
difference is a negative value of 48%.

d. CNN-QR obtains a quantile loss of 7.17 at the 70% quantile, 
whereas QR yields a quantile loss of 24.28. The percentage 
difference is -70%.

e. CNN-QR achieves a quantile loss of 8.70 for the 90% quantile, 
whereas Quantile Regression yields a quantile loss of 34.34. 
As shown in Table 4, the percentage change represents a 
decrease of 75%.

In summary, the findings indicate that CNN-QR consistently 
surpasses Quantile Regression in terms of quantile loss across 
different quantiles. The relative discrepancies span from 
−77% to −86%, demonstrating significant enhancements 
accomplished by CNN-QR in load forecasting accuracy when 
compared to QR.

In what follows, we analyze the detailed quantile regression 
results in the Tables 5-9. These tables provide critical insight 
into the relationship between key variables and load at various 
quantiles. The inclusion of this detailed statistical analysis 
enriches the understanding of the nuances of the predictive model 

Table 4: Quantile loss comparison
Quantile CNN-QR QR Relative difference (%)
10% 8.84 39.00 −77
30% 19.02 25.01 −24
50% 11.08 21.50 −48
70% 7.17 24.28 −70
90% 8.70 34.34 −75
Source: Own elaboration with electrical load data from the BCS system

Table 6: 0.3 quantile regression results
Variable Coef. Standard Error t P > |t| 0.025 0.975
CDD 7.4558 0.211 35.302 0 7.042 7.87
HDD 78.8377 1.517 51.974 0 75.864 81.811
Average PML 0.0225 0 48.717 0 0.022 0.023
Category 0.0994 0.001 91.566 0 0.097 0.102
Source: Own elaboration with electrical load data from the BCS system.

Table 5: 0.1 quantile regression results
Variable Coef. Standard Error t P >|t| 0.025 0.975
CDD 8.0337 0.268 29.966 0.000 7.508 8.559
HDD 62.7027 2.048 30.611 0.000 58.688 66.718
Average PML 0.0234 0.001 43.867 0.000 0.022 0.024
Category 0.0848 0.001 66.541 0.000 0.082 0.087
Source: Own elaboration with electrical load data from the BCS system
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and demonstrates the robustness of our approach. Tables 5-9 
corresponding to the regression results for each quantile are 
presented below.

From Table 5, we notice that the coefficient estimates for the 
variables CDD, HDD, Average PML, and Category are statistically 
significant at the 0.1 quantile. A one-unit increase in CDD is 
associated with an estimated increase of 8.0337 in Load, holding 
other variables constant. Similarly, a one-unit increase in HDD, 
Average PML, and Category is associated with estimated increases 
of 62.7027, 0.0234, and 0.0848 in Load, respectively.

Now, in Table 5, it can be observed that the coefficient estimates 
for the variables CDD, HDD, Average PML, and Category are 
statistically significant at the 0.3 quantile. It is worth noticing 
that a one-unit increase in CDD is associated with an estimated 
increase of 7.4558 in Load. In this case, a one-unit increase in 
HDD, Average PML, and Category is associated with estimated 
increases of 78.8377, 0.0225, and 0.0994 in Load, respectively.

The coefficient estimates for the variables CDD, HDD, Average 
PML, and Category are statistically significant at the 0.5 quantile. 
As it can be seen, a one-unit increase in CDD is associated with 
an estimated increase of 6.8901 in Load, keeping other variables 
constant. This implies that a one-unit increase in HDD, Average 
PML, and Category is associated with estimated increases of 
103.6569, 0.0228, and 0.1098 in Load, respectively, as shown 
in Table 7.

In the case of Table 8, we notice that the coefficient estimates 
for the variables CDD, HDD, Average PML, and Category are 
statistically significant at the 0.7 quantile. This implies that a one-
unit increase in CDD is associated with an estimated increase of 

7.6231 in Load, holding other variables constant. Similarly, a one-
unit increase in HDD, Average PML, and Category is associated 
with estimated increases of 143.5518, 0.0302, and 0.1059 in Load, 
respectively.

Finally, Table 9 show that the coefficient estimates for the 
variables CDD, HDD, Average PML, and Category are all of them 
statistically significant at the 0.9 quantile. We observe that a one-
unit increase in CDD is associated with an estimated increase of 
8.3107 in Load, maintaining other variables constant. Similarly, 
a one-unit increase in HDD, Average PML, and Category is 
associated with estimated increases of 132.6222, 0.0715, and 
0.0897 in Load, respectively.

8. CONCLUSIONS

The research highlights the importance of load forecast accuracy 
amid the changing dynamics of Mexico’s energy sector. 
Combining CNN-QR with RTCF using deep learning marks a 
major advancement in forecasting methodologies. These advances 
are particularly critical given the decentralized nature of the 
grid and the increasing integration of renewable energy sources. 
Our analysis of the Mexican BCS system has illuminated the 
effectiveness of these techniques. They skillfully capture complex 
spatiotemporal patterns, increasingly common due to the variable 
nature of renewable energy generation. The proposed forecasting 
method skillfully addresses the emerging challenges posed by the 
assimilation of renewable energy into the grid, a trend highlighted 
by the substantial increase in renewable electricity production 
since 2014.

The RTCF, with its ability to synthesize category characteristics, 
has proven its worth as an appropriate tool. It facilitates a 

Table 8: 0.7 quantile regression results
Variable Coef. Standard Error t P > |t| 0.025 0.975
CDD 7.6231 0.304 25.059 0 7.027 8.219
HDD 143.5518 1.322 108.584 0 140.96 146.143
Average PML 0.0302 0.001 44.655 0 0.029 0.032
Category 0.1059 0.002 58.655 0 0.102 0.109
Source: Own elaboration with electrical load data from the BCS system

Table 9: 0.9 quantile regression results
Variable Coef. Standard Error t P > |t| 0.025 0.975
CDD 8.3107 0.442 18.821 0 7.445 9.176
HDD 132.6222 1.254 105.766 0 130.164 135.08
Average PML 0.0715 0.001 96.666 0 0.07 0.073
Category 0.0897 0.002 36.021 0 0.085 0.095
Note: Own elaboration with electrical load data from the BCS system

Table 7: 0.5 quantile regression results
Variable Coef. Std. Err. t P > |t| 0.025 0.975
CDD 6.8901 0.214 32.157 0 6.47 7.31
HDD 103.6569 1.272 81.469 0 101.163 106.151
Average PML 0.0228 0 46.859 0 0.022 0.024
Category 0.1098 0.001 93.94 0 0.107 0.112
Source: Own elaboration with electrical load data from the BCS system
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broader representation of incoming data, allowing for a deeper 
understanding of underlying demand patterns. This improvement 
is vital for effective resource allocation and strengthening 
grid stability, especially in a system experiencing a significant 
increase in renewable energy. The implications of our findings 
are enlightening and promote the optimized utilization of energy 
resources and the establishment of reliable energy supply amidst 
the inherent fluctuations of modern energy systems.

In essence, this research presents a groundbreaking methodological 
approach for load forecasting within Mexico’s BCS system. It 
imparts critical insights, underscoring the imperative need for 
sophisticated forecasting techniques in the face of renewable 
energy expansion and grid decentralization. The demonstrated 
efficacy of our proposal in delivering accurate and reliable 
forecasts positions them as pivotal contributions to the energy 
sector, steering stakeholders toward a resilient and sustainable 
energy future.

Finally, our study not only redefines the landscape of load 
forecasting in Mexico, but also signals a transformative step 
towards a skillful treatment of the complexities of modern energy 
systems, a beacon for future efforts in energy management and 
the formulation of policies.
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