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ABSTRACT

Electricity market analysis is useful for accessing strategic market information in order to set energy policy. According to recent interpretations of 
the Article 44 of the Iranian Laws, the Iranian electricity market is to become a free market. Mechanisms that were implemented in the Spanish 
electricity market - a free market - provide a versatile benchmark to employ time series modeling approach to compare Iran and Spain’s electricity 
markets via price and load time series as two main indices. Here, we develop linear (autoregressive integrated moving average [MA]), heteroskedastic 
(autoregressive MA model [ARMA]-generalized autoregressive conditional heteroskedastic [GARCH]), and nonlinear time series models to model the 
Iranian/Spanish electricity market for price and load time series indices. We further utilize the conditional variance to propose the ARMA-TGARCH 
model as the best suited model for the Iranian electricity market price. We employ our models and time series analysis to forecast and question the 
status of the Iranian market structure as a free market.
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1. INTRODUCTION

The competitive electricity market has led to a lot of opportunities 
in worldwide and to advantages such as cheaper electricity for end 
consumers as well as higher efficiency in generation, transmission 
and distribution services (Asgari and Monsef, 2010; Corchero, 
2011; Weron, 2007). Another advantage is the development of 
decision support system models in energy market management 
(Finn, 2000; Sioshansi, 2008; Ventosa et al., 2005). Since the late 
1980s, policy makers and regulators in a number of countries have 
liberalized and deregulated their electric power sectors (Sioshansi, 
2008). The Iranian government is also trying to privatize their 
electricity market (Khalili and Mehri, 2007). In general, the rate of 
market growth and restructuring can usually be affected by various 
economic factors (Aggarwal et al., 2009; Le and Vinh, 2011). Some 
of these factors are inflation (Le and Vinh, 2011), energy prices 
(such as oil/gas price) (Boqiang and Dunguo 2008; Farzanegan 

and Markwardt 2009; Moutinho et al., 2011), the exchange rate 
(Yu and Mallory, 2013; Cong et al., 2008; Sameti et al., 2004), etc.

In addition, other factors such as “International sanctions” and 
the “Iranian nuclear crisis” are redefining the Iranian economic 
market, e.g., the energy sector (BBC News [Middle East], 2015; 
Monshipouri and Dorraj, 2013; Peterson, 2012). Furthermore, 
the Iranian government (Ministry of Energy) takes an undeniable 
role as the primary owner of the giant energy industries, which 
tremendously influences the market dynamics as well as 
policy-making (Cavendish, 2007; Enerdata, 2014; Usa, 2009).

The Iranian electricity market took over 100 years to grow, since 
first being established in Mashhad, Iran in 1901 (Tavanir, 2012) 
until it was launched on 23 October 2003 (Asgari and Monsef, 
2010; Tavanir, 2012). One of the main concerns about the Iranian 
electricity market is that there is a “market power” similar to the 
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mandatory pool (Asgari and Monsef, 2010). The pool is named 
as an e-commerce marketplace (Bigdeli and Afshar, 2009; 
Bigdeli et al., 2009). According to the definition of the pool, two 
mechanisms determine the price: Uniform pricing, in which the 
market-clearing price is paid to every winning block; and pay-as-
bid (PAB), in which every winning block receives its bid price as 
its income (Bigdeli and Afshar, 2009; Bigdeli et al., 2009). The 
Iranian electricity market follows a PAB payment mechanism 
with an unilateral auction (Asgari and Monsef, 2010; Bigdeli 
and Afshar, 2009; Bigdeli et al., 2009). It is a hybrid market 
model, in which the supplier and the consumer both have direct 
access to the market information, except for the prices. Bilateral 
contracts are allowed in Iran’s energy market (Asgari and Monsef, 
2010). However, the consumers and the producers – Similar to 
the mandatory pool state – have to send their bids to the Market 
Operator before the market is shaped by the beneficiaries (Asgari 
and Monsef, 2010; Bigdeli and Afshar, 2009). Also, the Regional 
Electric Companies are entitled to forecast only their hourly 
demand, which means that the demand curve has a vertical line at 
a certain hour (Asgari and Monsef, 2010). On the other hand, the 
companies have power over pricing to some extent, depending on 
their size and access to market information (Asgari and Monsef, 
2010; Bigdeli and Afshar, 2009).

The annual reports of the performance of the Iranian electricity 
industry of 2010-2011 also indicate considerable improvements 
in different sectors of this industry (Tavanir, 2011a). The Iranian 
government took fundamental technological steps to have a 
competitive market, and they published some laws (Article 44) 
facilitating privatization and deregulation of this market, see 
e.g., Asgari and Monsef (2010), Tavanir (2011a) and Tavanir 
(2011b). Despite these regulations, the growth in the market seems 
to be slow, which can be due the political atmosphere related to 
the Iranian economy (Mazarei, 1996; Khalili and Mehri, 2007; 
Behboudi et al., 2014).

Power market liberalization was pioneered by Chile. Such 
reforms were followed by the reorganization of the British 
electricity sector in 1990, and later in Sweden, Denmark and 
North America (Weron, 2007). Due to the advantages of a 
liberalized electricity market, the United States and European 
countries also applied developed management systems, such as 
preparing the appropriate states for financial contracts to hedge 
against the risk of price volatility (Corchero, 2011; Weron, 
2007). Such a management system has improved the market 
in these countries, making them good benchmarks for other 
countries seeking strategies to improve their electricity market 
(Weron, 2007).

One of these benchmarks is the Spanish electricity market, the 
“Iberian Electricity Market (MIBEL).” After establishing MIBEL 
in 2007, some published rules for the day-ahead, intraday market 
and for renewable electricity were introduced (Ciarreta et al., 
2014; Corchero, 2011; Omel website, 2010; Weron, 2007). These 
rules encourage joining the Spanish market with the Portuguese 
electricity system. This is useful for improving the previous 
mechanisms of the Spanish electricity market in order to extend it 
into a competition market (Corchero, 2011; Ciarreta et al., 2014).

In contrast to the Iranian electricity market, the operator of the 
Spanish electricity market considers “the bids for accepting 
generator companies in the spot markets,” and he/she investigates 
if these agents can pass some sessions in the day-ahead market 
(Corchero, 2011). The Spanish electricity market is a bilateral 
market (Gonzalez and Basagoiti, 1999; Corchero, 2011; Muñoz 
et al., 2013; Weron, 2007), and the price is determined by the spot 
price; namely, the aggregated demand at a certain hour and the 
price elasticity of demand is not zero (Weron, 2007; Corchero, 
2011). In this market, companies have the ability to present their 
price to the market, clearly indicating it as a benchmark (Corchero, 
2011; Ofgem, 2013; Weron, 2007).

In contrast to the Spanish electricity market price, there is not any 
publicly published information of the Iranian electricity market 
indices, as was noted by Asgari and Monsef (2010). Therefore, the 
producers and consumers rely on price forecasting to prepare their 
corresponding bidding strategies in order to maximize their profits 
(Asgari and Monsef, 2010; Amjady et al., 2010; Bigdeli et al., 
2009). These situations suggest a non-competitive, oligopolistic 
(or monopolistic) nature of competition in the Iranian electricity 
market (Nazemi and Farsaee, 2014; Van Alfen, 2014).

Therefore, the question arises over whether it is possible to 
describe the Iranian electricity market as a competitive market that 
is similar to the Spanish electricity market, even when considering 
its conditions of conflict.

According to contemporary market management principles, in 
order to understand the patterns of market behavior (or to sell our 
products/services in international markets), it is essential to plan 
a market analysis along with information on elements that impact 
the market, as a marketing approach from Kotler and Armstrong 
(2010; 2013) and Tanner and Raymond (2011). In other words, the 
electricity market analysis will be an ideal guide for market analysts 
and planners in this sector, as noted by Stevens et al. (1993).

To address the topic of energy market analysis, Garcia and 
Arbeláez (2002) evaluate “the impacts of possible mergers in the 
Colombian electricity market.” Woo et al. (2003) further examine 
the market reforms in the UK and other countries. Ventosa et al. 
(2005) focus on electricity generation market modeling. Conejo 
et al. (2005) and Mazengia and Le (2008) represent electricity price 
forecasting through time series analysis. Rodriguez and Anders 
(2004) investigate the competitive Ontario power system market. 
Ghadrei and Nokhandan (2009), Pao (2007) and Amjady and Keynia 
(2010) propose a neural network model for forecasting prices. Lora 
et al. (2007) present the weighted nearest neighbors technique for 
forecasting electricity prices. Weron (2014) review the state of the 
art of electricity price forecasting with a look into the future.

Some few studies focus on the Iranian electricity market in 
terms of: Electricity-price behavior and load, market power 
and its characterization (Asgari and Monsef, 2010; Bigdeli and 
Afshar, 2009) and forecasting electricity price by employing 
autoregressive integrated MA (ARIMA) and generalized 
autoregressive conditional heteroskedastic (GARCH) models 
(Safakish and Manzur, 2009). However, these studies do not 
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provide any explanation for the level of competition in the Iranian 
electricity market.

Electricity price forecasting is also extremely important for all 
market players in the short, medium and long term (Benini et al., 
2002). Some market researches do not consider other factors 
(such as load) that have a possible impact on the electricity price, 
especially those studies related to the Iranian electricity market. 
So, it is critical for market managers to suppose other elements 
such as load (or demand of the market), which modifies the pricing 
strategies in the (competitive) market (Bunn, 2004; Kotler and 
Armstrong, 2010; Nicholson and Snyder, 2011; Weron, 2007). In 
addition, the basic economic theories explain that the pattern of 
price via demand is predictable in competitive markets (Nicholson 
and Snyder, 2011). This suggests the existence of a relationship 
between price and load in the liberalized markets (Weron, 2007; 
Nicholson and Snyder, 2011). The variety of the load changes 
the price in a competitive electricity market (Weron, 2007). The 
importance of this index has been investigated. Vilar et al. (2012) 
represent the forecasting of electricity demand and price in the 
competitive Spanish electric power market. Ahmari et al. (2005) 
improve on the importance of load amount in the Iranian electricity 
market. Barforoushi et al. (2006) focus on a market plan based on 
the load in Iran. Afshar and Bigdeli (2011) consider short-term 
load forecasting. Several of these studies do not include price as 
another factor in the Iranian electricity market.

The current research focuses on a time series analysis approach 
to inspecting the existing relationship between the two indices 
(price and load) in both markets. The time series approach has 
been utilized in modeling efforts in diverse applications (e.g., Box 
et al., 1994; Hu, 2011; Jianqing and Qiwei, 2005 and West et al., 
1994). The main objectives of time series analysis modeling are: 
Data collection methods (such as hourly, daily and so on), the 
dynamics of the time series behavior, forecasting future events, and 
controlling future events via intervention (Hu, 2011). The original 
ideas of proposing theory and applying the time series analysis 
were formed by Box and Jenkins in 1970 (Box and Jenkins, 1994; 
Brockwell and Davis, 2006 and Jianqing and Qiwie, 2005). They 
also generated and popularized the use of “autoregressive–MA.” 
as was pointed out by Box and Jenkins (1994) and Makridakis 
and Hibon (1997). The “ARIMA” models are generalized based 
on the autoregressive MA model (ARMA) model theory (Box and 
Jenkins, 1994 and Makridakis and Hibon (1997). The ARIMA 
model is a particular type of mathematical regression model and 
it is used to approximate the behavior of observations in scenarios 
where data exhibits non-stationary movement (e.g., Armstrong, 
2001; Box and Jenkins, 1994; Box et al., 2008; Cryer and Chan, 
2008; Makridakis and Hibon, 1997; Wang and Jain, 2003; Wurtz 
et al., 2006). ARIMA forecasting models were further developed in 
the theme of economic and financial variables. They are computed 
and applied for ex-ante and ex-post forecast models as noted by 
Armstrong (2001). In contrast to regression-form models, ARIMA 
models (also known as parameter-based models) are utilized to 
analyze the observations in complicated stochastic processes 
(e.g., Cryer and Chan, 2008 and Wurtz et al., 2006). Conditional 
variance and mean in time series lead us to introduce the “GARCH 
model” (Bollerslev, 1986; Wurtz et al., 2006). Studies considering 

a “conditional heteroskedastic model” are useful for improving 
other models (e.g., asymmetric power autoregressive conditional 
heteroskedastic [ARCH], and ARCH/GARCH models) and their 
related theorems (Bollerslev, 1986; Tsay, 2005; Wurtz et al., 
2006). The GARCH models are applied as both parametric and 
non-parametric models (Aiube et al., 2011; Hu, 2011; Rohan 
and Ramanathan, 2013; Taylor, 2006; Tsay, 2005. p. 102-109, 
113-136). The ARMA-TGARCH model is further introduced 
to develop time series estimates exhibiting structural changes in 
trends and break points (Muñoz et al., 2007; Tsay, 1989; Tsay, 
2005). The aggregation of several ARMA-GARCH models formed 
this model in order to estimate the nonlinear behavior in a time 
series (Di Narzo, 2008; Muñoz et al., 2007; Tsay, 2005; Wurtz 
et al., 2006; Zhang, 2009).

This study attempts to address whether or not the Iranian 
electricity market can be categorized as a liberalized and 
competitive market. Toward this goal, we compare the market 
in Iran to that of Spain. Such a comparison sheds light on 
how Iranian electricity market behavior can be compared to a 
developed market. So, we further present a time series approach 
to employing linear and non-linear models with price and load 
as the main factors in these markets. We also investigate the role 
of load determination in these markets. Here, the load and price 
relationship is discovered.

The second section of this research represents data description via 
time series statistical methods. It surveys four time series, which 
are named: Iranian electricity price (IEP), Spanish electricity 
price (SEP), Iranian electricity load (IEL), Spanish electricity load 
(SEL). In this section, we also investigate the relationship between 
two indices in these two markets: Price and load. Then, in the third 
section we focus on two well-known time series models for each 
time series ARIMA and ARMA-GARCH model for both price 
and load indices. In addition, IEP and load are also modeled by 
ARMA-TGARCH and seasonal ARIMA (SARIMA) respectively. 
The models are selected based on behavioral properties of each of 
our time series. Then, the fourth section compares these models. 
This is done in order to find the best and most valid model for each 
time series. Our next section in this research presents forecasting 
for IEP and IEL in order to make accurate estimates about the 
future price and load for the next 14 days. The last section indicates 
the conclusions of this paper according to our main question. 
Therefore, the findings of the current research provide strategic 
knowledge and better estimates regarding this energy market, so 
that future planning can take into account rapid changes.

2. METHODS

2.1. Data Description: Iranian and SEP and Load
According to “Statistical reports of the Iranian Electric Power 
Industry” (Tavanir, 2011b), the pricing of electricity sales to 
various consuming sectors was based upon a constant rate in 
the last few years (such as 2004). Although there is increasing 
annual investment in the Iranian electric power industry, there 
is significant variation in the average pricing rate. This was 
still the case during the 3 years from 2007 and 2010, as noted 
in Tavanir (2011b). Inherently, however, it supplies the cost of 
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three significant parts of the electric power industry: Generation, 
transmission and distribution (Tavanir, 2011a). Here, the important 
issue is that 85% of power generation is still controlled and 
managed by the Iranian Ministry of Energy (Mirsaeedi, 2012). 
The importance of electricity pricing and the matter of variations 
in the market motivate us to follow Iran’s daily electricity price 
time series over the course of three 3 years so that we can follow 
the corresponding market responses. Figure 1a displays the IEP 
time series during this period. We present the reported daily data 
starting on the 21st of March, 2007 and ending on the 20th of March, 
2010. The daily electricity price time series is calculated via the 
“hourly accepted weighted average price,” a quantity based on 
Rials/kWh, and it is reported by the Iranian Ministry of Energy 
(Bigdeli and Afshar, 2009; Ministry of Energy [Islamic Republic 
of Iran], 2010).

As mentioned before, Spain’s electricity market has been 
deregulated since 2007. The new Spanish Electricity Market 
begins its general operations, and then all generators, distributors, 
commercialization companies and final consumers negotiate 
everything in the spot electricity market, as was noted by Corchero 
(2011), Gonzalez and Basagoiti (1999) and Muñoz and Dickey 
(2009). However, the current volatile financial markets make 
pricing very difficult to predict, even in the case of electricity 
markets (Muñoz and Dickey, 2009), which lack storage capacity. 
This research also represents a descriptive analysis of the Spanish 
electricity spot price time series, which is similar to the IEP time 
series. It covers 3 years of the SEP time series in Figure 1b. The 
period of the daily data starts on the 1st of July, 2007 and ends on 
30th September 2010.

The important role of load in electricity market pricing motivates 
us to follow Iran’s daily electricity load time series and the 
SEL over the course of three 3 years, so that we can track the 
corresponding market responses. Data is calculated daily, similarly 
to the electricity price for both time series. For the IEL time series 
in Figure 2a, we present the reported observations, which start 
on the 21st of March, 2007 (this corresponds to the beginning of 
the Iranian New Year 1386), and they end on the 20th of March, 
2010 (the end of the Iranian year 1388). Similarly to the IEL time 
series; this study also presents a descriptive analysis of the SEL. It 
covers 3 years of the Spanish electricity market load in Figure 2b. 
The period of the daily data starts on the 1st July 2007 and ends 
on 30th September 2010. The quantity of the load is based on the 
“kWh” measure. Here, these load time series are divided by 1000 
to make the scale smaller and simplify the calculations.

For these two electricity markets, the daily electricity data 
time series is calculated via the “hourly data.” These data are 
represented by the “Ministry of energy (Islamic republic of Iran” 
(2010) for the Iranian electricity market and the “Spanish market 
operator” (2010) for Spain. The price and load are reported daily 
in order to investigate the behavior via a suitable model during this 
study. Consequently, the valid prices and load exhibit an indication 
of the total behavior during a 24-h period. The total number of 
observations is 1095 for each time series, price and load in the 
Iranian electricity market. The number of observations of the SEP 
and load that are investigated is 1188. We employ the software “R” 
as our statistical analysis tool (R Development Core Team, 2011). 
Overall, the SEP plot shows daily upward drifts. This systematic 
pattern happens for approximately the first 600 observations of 
our time series, and then SEP exhibits a downward tendency in the 

Figure 2: (a) Daily Iranian electricity load (IEL) time series and (b) daily Spanish electricity load time series. Here, time is shown in the order of 
observation for each our daily series

b

Figure 1: (a) Daily Iranian electricity price time series (2007-2010) and (b) daily Spanish electricity price time series (2007-2010). Here, time is 
shown in the order of observation for each of our daily series

ba

a
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observations. Again, this behavior pattern happens for the last part 
of this time series, as is shown by Figure 1b. On the other hand, 
although this time series has in some parts high spikes and jumps, 
there is just one span that has noticeably decreasing jumps. They 
happen at around 2 months, starting in the middle of February and 
continuing until the middle of March 2010. According to Figure 3, 
high volatility observed in the price could be due to an increase 
in electricity generation by wind (Ketterer, 2014).

The oscillations appear close to the upward trend and can be a sign 
of the seasonal behavior in the SEP. This is shown in Figure 4b and 
contrasted to the IEP in Figure 4a. The tendency of the observation 
variance reverts around a mean level. However, in order to get a 
suitable estimate from the data, the logarithm as a transformation 
function is not worked out here for both time series. This variety 
in behavior is more clear and significant for the IEP time series.

The IEP shown in Figure 1a exhibits various behaviors and upward 
trends in the daily values. Three breakpoints are recognized in the 
IEP time series using the Breaks for Additive Seasonal and Trend 
(BFAST) approach (Figure 5). The BFAST methodology is often 
used as a generic change detection tool in time series (Verbesselt 
et al., 2010). It involves the detection and characterization of 
breaks for additive seasonal algorithm and trends. This detection 

analysis is basically formed according to the decomposition model, 
which assumes three component behaviors of the time series. “An 
additive decomposition model is used to iteratively fit a piecewise 
linear trend and a seasonal model” (Verbesselt et al., 2010). The 
general model is given by Equation (1), where Yt is the observed 
data at time t = 1, 2,.., n = 1095., Tt is the trend component; St is 
the seasonal component; and et is the random noise.

Yt = Tt + St + et (1)

The BFAST integrates the iterative decomposition of time series 
into two trends: Seasonal and noise components, with methods for 
detecting change within time series. This method is not specific to 
a particular data type and can be applied to time series without the 
need to normalize for land cover types, select a reference period, 
or change trajectory (or specific thresholds), as noted by Verbesselt 
et al. (2010). Therefore, three break points are detected at a 95% 
confidence interval for the IEP time series. These breakpoints happen 
on the 366th day, 585th day and 846th day of this time series, and they 
are indicated on the left-hand side of Figure 5 as “Hidden lines.” 
Existence of these breakpoints will indeed influence the choice of the 
time series model, as they indicate the thresholds in our observations 
(Verbesselt et al., 2010). Therefore, we notice four separate parts 
in the treatment of the time series (Figure 6a). These four sections 

Figure 3: (a) Daily Spanish electricity price after detecting outliers and (b) daily Spanish electricity generation by wind (scale: Inverse of wind 
divided by 1000). Time is shown in the order of observation for each of our daily series

b

Figure 4: Seasonality behavior shown in four time series. (a) The 21 days of Iranian electricity price time series. (b) The 21 days of Spanish 
electricity price time series. (c) The 21 days of Iranian electricity load time series. (d) The 21 days of Spanish electricity load time series

dc

ba

a



Nasrazadani and Gracia: Comparing Iranian and Spanish Electricity Markets with Nonlinear Time Series

International Journal of Energy Economics and Policy | Vol 7 • Issue 2 • 2017 267

are as follows: (a) 21st of March, 2007 until 19th of March, 2008 
(approximately a full year); (b) the 20th of March, 2008 until the 
25th of November, 2008 (4 months prior to the Iranian new year); 
(c) 26th of November, 2008 until the 13th of July, 2009; and (d) the 
14th of July, 2009 until the 20th of March, 2010.

The IEL time series in Figure 2a and the SEL time series in 
Figure 2b also demonstrate upward and downward trends in 

their daily values during the sampled 3 years. Initially, there are 
some spikes occurring on special dates of the SEL time series, 
which are not seen in the IEL time series. Figure 4d shows the 
SEL time series demonstrating seasonality behavior; see also 
the significant decrease in the variance of this time series in 
Table 1 after taking a seasonal difference. Although this kind 
of behavior is not clear for the IEL time series in Figure 4c, a 
significant decrease in variance of this time series after taking 

Figure 5: Plot of BFAST diagram from Iranian electricity price (IEP) time series. (a) Plot of BFAST trend detecting by breakpoints in weekly IEP 
time series. (b) Plot of BFAST detecting the changes in IEP time series via decomposition model

ba

Figure 6: (a) Histogram of daily Iranian electricity price time series. (b) Histogram of daily Spanish electricity price time series. (c) Histogram of 
daily Iranian electricity load time series. (d) Histogram of daily Spanish electricity load time series

dc

a b
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a seasonal difference suggests seasonal behavior in this time 
series, according to Table 1.

In addition, the IEL time series has yearly cycling behavior in 
Figure 2b. The periodogram of the IEL time series in Figure 7a 
is used to recognize the dominant cyclical behavior (periodic or 
frequency) in this time series (PennState, 2014; Shumway and 
Stoffer, 2010).

The dominant peak occurs close to 0.0027 in this diagram. 
Investigation of the periodogram value indicates that the peak 
occurs at nearly exactly this frequency. This corresponds to 
about 1/0.0027≈365 time periods. Thus, this suggests the annual 
cycling pattern in this time series (for more information, refer to 
PennState, 2014 and Shumway and Stoffer, 2010). By subtracting 
the seasonal difference from the yearly time series, the histogram 
diagrams exhibit a Gaussian-type distribution in Figure 7b.

According to Table 2, the Jarque-Bera test of these four time 
series demonstrates that there is not any normal distribution in 

the observations (Bai and Ng, 2005). The Null hypothesis of the 
Jarque-Bera test is rejected, since the P < 0.05. This means that 
the skewness is not equal to zero and (or) the kurtosis is not equal 
to three (Pfaff, 2008).

Furthermore, considering the IEP time series plot in Figures 1a 
and 5b, we identify four sections that have particularly distinct 
motions. For each section of the IEP time series, the P value of the 
“Jarque–Bera normality test” is also <0.05. It shows that skewness 
and kurtosis do not match a Gaussian distribution (Table 2). In 
addition, after detecting the outliers, the histograms of the four time 
series in Figure 6 prove that there is no normal distribution. The 
IEP time series distribution histogram in particular is not unique, 
and this is made clear for the IEP in the upper left part of Figure 6, 
which suggests “trimodality” in the data (Di Narzo, 2008). This 
proves that the time series exhibits three separate distributions 
and bimodality of data. These results also indicate that there is 
symmetry in the SEP and SEL time series as well as in the four 
parts of the IEP series and IEL; and there are tails on the left (or 
right) side of their distributions (Figure 6 b-d).

Furthermore, the “augmented Dickey Fuller” (ADF) test is an 
extension to the Dickey and Fuller test of 1979. It examines 
whether or not time series are stationary (Di Narzo et al., 2008; 
Tsay, 2005). Here, the ADF test cannot be utilized, since the IEP 
exhibits structural changes in its trends, including three break 
points (Figure 2a). The SEP and SEL (as shown in Figure 4b 
and d) demonstrate seasonality as well as cycling behavior over 
time. Also, the IEL has the seasonality component according to 
Table 1, as the variance of this time series decreases significantly 
after taking seasonal differences (Box and Jenkins, 1994; Cryer 
and Chan, 2008; Tsay, 2005). The Zivot and Andrews test was 
proposed by Zivot and Andrews in 1992. We use this unit root 
test in order to take into account any possible structural breaks. 
The null hypotheses is defined such that there exists a unit root 
with drift and/or break at an unknown point against the alternative 
hypothesis, which is a stationary trend with a break in intercept or 
trend at an unknown point (Pfaff, 2008). For four time series, the 
null hypothesis here is rejected, because the test statistics value is 

Figure 7: (a) Periodogram of the Iranian electricity load (IEL) time series after taking the seasonal difference to show its yearly cycling behavior. 
(b) Histogram of daily IEL time series after taking seasonal difference and seasonal yearly difference

ba

Table 1: Variance of Spanish electricity market time 
series and Iranian electricity market time series and their 
seasonal difference and non-seasonal difference time series
Time series Variance 

from 
four time 

series after 
detecting 
outliers

Variance 
from four 
time series 
after taking 

seasonal 
difference

Variance of 
four time 

series after 
taking 

first order 
difference

SEP 212.189 23.585 8.959
SEL 6650.003 1769.004 2215.375
IEP - total time series 397.161 - 0.977
First part of IEP 10.844 - 0.621
Second part of IEP 20.519 - 0.872
Third part of IEP 12.850 - 1.217
Four part of IEP 24.366 - 1.224
IEL 6522.622 375.348 452.885
SEP: Spanish electricity price, SEL: Spanish electricity load, IEP: Iranian electricity 
price, IEL: Iranian electricity load
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less than the critical values at each significant confidence interval 
level (95%, 90% and 99%) (Pfaff, 2008) (Table 3). In conclusion, 
there is a trend in our four time series. In order to have a better 
understanding of the SEP, its load and IEP behaviors, the seasonal 
difference and non-seasonal difference for these time series have 
been taken. The results of this test are presented in Table 3.

The autocorrelation function (ACF) and partial correlation function 
(PACF) (Tsay, 2005) are employed to analyze these four time series: 
The IEP time series, the IEL, the SEP and the SEL time series. 
They show the correlation between one variable at different times 
(Cryer and Chan, 2008; Tsay, 2005). The ACFs and PACFs do 
not display any stationary behavior, even after taking a first-order 
difference for each of the three time series: The IEL time series 
(Figure 8c and d), the SEP time series (Figure 8b) and the SEL 
time series (Figure 8a).

There is weak stationary behavior in each time series. The same 
pattern is observed in the first part of the IEP in Figure 9a: After 
its first-order difference, the lags in plots have a slow decay 
(Figure 10b), as is pointed out by Tsay (2005). This result leads us to 
use the ARIMA model in order to develop suitable models for these 
time series (Cryer and Chan, 2008 and Tsay, 2005).

In contrast to the weak stationary behavior in the first section of the 
IEP time series, we can observe in Figure 10b that, for the last three 
parts of the IEP time series, the ACF and PACF imply that there 
is a very weak serial correlation pattern among our observations. 
It seems that the behavior of the time series is random and the 
stochasticity component of the IEP time series is white noise. Most 
of the ACFs and PACFs are equal to almost zero for each section 
(Cryer and Chan, 2008; Tsay, 2005). The white noise is introduced 
as a stationary process; this means that the time series behavior 
is defined as a sequence of independent, identically distributed 
random variables “et” (Cryer and Chan, 2008).

However, we note that the ACFs and PACFs obtained from the 
set of the squared observations (after taking the first difference) 

indicate that the magnitude of change in observations may show 
correlation. In other words, serial dependence exists within the 
variance of data (Hossain et al., 2011) (Figures 9b-d and 10 – right 
part [c, f, i, l]; Table 1). On the other hand, as shown in Figure 6, 
the IEP does not show an independent and identical distribution; 
the BDS test verifies this claim. The BDS test developed by Brock 
et al. in 1987 (and later published as Brock et al., 1996) is arguably 
the most popular test for evaluating nonlinearity (Wuertz, 2013; 
Zivot and Wang, 2006). It was originally designed to test for the 
null hypothesis of independent and identical distribution in order 
to detect non-random chaotic dynamics. The main concept behind 
the BDS test is to calculate the correlation integral at embedding 
dimension m. The null hypothesis is defined such that the time 
series is independently and identically distributed (Zivot and Wang, 
2006). According to Table 4, since the P value for five combinations 
of the IEP time series is <0.05, the null hypothesis is rejected and, 
therefore, the time series is not a unique distribution series. It means 
that our alternative hypothesis is accepted (Zivot and Wang, 2006).

Table 3: Zivot and Andrews test, unit root test, after 
detecting outliers for all of our time series
Result of unit root 
test 

Critical 
values 
at 99% 

confidence 
interval 

level

Critical 
values 
at 95% 

confidence 
interval 

level

Critical 
values 
at 90% 

confidence 
interval level

Test statistics value 
for each time series

Critical values

IEP time series
Test value: −5.6576 −5.57 −5.08 −4.82
IEL time series
Test value: −5.7438 −5.57 −5.08 −4.82
SEP time series
Test value: −10.3691 −5.57 −5.08 −4.82
SEL time series
Test value: −8.3939 −5.57 −5.08 −4.82
SEP: Spanish electricity price, SEL: Spanish electricity load, IEP: Iranian electricity 
price, IEL: Iranian electricity load

Table 2: Results of Jarque–Bera test performed for Spanish electricity market time series and Iranian electricity market 
time series (for their price and load)
For First part - Spanish electricity market time series

Number observations Time span Jarque–Bera test*
SEP time series 1182 July 2007, 01-September 30, 2010 30.710

P: 2.145e-07
SEL time series 1188 July 2007, 01-September 30, 2010 13.4229

P: 0.001
IEP time series Second part - Iranian electricity market time series
1st section of time series 365 (1-365) March 21, 2007-March 19, 2008 14.349

P: 0.0001
2nd section of time series 210 (366-584) March 20, 2008-October 25, 2008 122.5985

P: <2.2e-16
3rd section of time series 260 (585-845) October 26, 2008-July 13, 2009 25.4266

P: 3.011e-06
4th section of time series 249 (846-1095) July 14, 2009-March 20, 2010 45.9925

P: 1.03e-10
IEL time series 1095 (1:1095) March 21, 2007-March 20, 2010 14.349

P: 0.0001
SEP: Spanish electricity price, SEL: Spanish electricity load, IEP: Iranian electricity price
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Figure 8: (a) The autocorrelation function (ACF) and partial correlation function (PACF) from the seasonal order difference of Spanish electricity 
load time series, (b) ACF and PACF from Spanish electricity price time series after taking seasonal order difference. (c) The ACF and PACF from 

the seasonal order difference of Iranian electricity load (IEL) time series and (d) the ACF and PACF from the seasonal difference of first order 
differencing of IEL time series
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The BDS test result suggests that the time series has a nonlinear 
pattern. Therefore, it is necessary to employ a model which is 
applicable to both “serial dependence in the variance of data” and 
also to a “nonlinear behavior pattern” in the time series. All of the 
results lead us to employ the ARMA-TGARCH model, which is 
explained in the next part (Di Narzo, 2008; Hossain et al., 2011; 
Muñoz et al., 2007; Tsay, 1989; Wurtz et al., 2006; Zhang, 2009; 
Tsay, 2005). As shown in Figures 8 and 10 - middle part (b, e, h, k) 
due to the existence of weak stationary behavior in three of our time 
series (i.e., IEL, SEP, SEL) and the first section of the IEP time series, 
the first estimated model that can be applied is the ARIMA model 
(Cryer and Chan, 2008; Tsay, 2005). Hence, for each of these time 
series, the third section of our study presents estimated ARIMA 
models in order to distinguish the behavior of these time series.

2.2. Relationship between the Price and Load
As explained above, the load (as demand) is introduced into the 
competitive and developed electricity market as the significant 
index that normally has an impact on the market price (e.g., Kotler 
and Armstrong, 2010; Nicholson and Snyder, 2011 and Weron, 
2007). In accordance with the scatter plot, which is a quick-view 
method for revealing obvious relationships between two variables 
(Sharma, 2008), we investigate the pattern of correlation between 
our pairs of time series indices. Here, we assume the daily IEL 
time series as the independent variable and the daily electricity 
price time series as the dependent variable. As we observe in the 
scatter plot of these two time series, there is no line; and there is 
also no slope which is positive or negative in Figure 11a (Friendly 
and Denis, 2005; Sharma, 2008). This suggests that there is no 
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(linear) relationship between the IEP and the IEL time series. In 
contrast to the Iranian electricity market and the Spanish electricity 
market, there is a positive correlation between these two time 
series in some part of the SEP time series and the SEL time 
series (Figure 11b). This result leads us to consider how Spanish 
electricity generated by wind impacts the behavior of the price in 
this market (Ketterer, 2014).

2.3. Modeling Iranian and Spanish Electricity Market 
Time Series
Here, we present the time series modeling analysis in order to 
obtain the best fitting model for each of the time series.

2.3.1. ARIMA models for Spanish and Iranian price and load 
time series
As we explained in above, we try to improve on the stationary 
conditions in the Spanish and Iranian price and load time series by 
taking the seasonal differences, as shown in Figure 8. However, 
after taking this seasonal order difference, these time series show 
a weak stationary behavior pattern during those periods. For the 
SEP time series and its load, the IEL time series and the first part 
of the IEP time series, we apply the ARIMA model to estimate 
the behavior of these time series. The ARIMA model parameters 
obtained for each time series are presented in Table 5. The inverse 
of the Spanish electricity generated by the wind coefficient is 
significant for the SEP. This result leads us to investigate the role 
of Spanish electricity generated by wind as an exogenous factor 
(here, it is introduced as the Xreg variable in the ARIMA model) 
for SEP time series (refer to Chan et al., 2012; Cryer and Chan, 
2008 and Eriksrud, 2014).

The general ARIMA (p, 1,q) (P,D,Q) model is introduced in detail 
by Cryer and Chan (2008), Dahyot (2012), Tsay (2005). Yt is 
introduced as a dependent variable in Equation (2). It is defined 
as electricity price (or load) for both markets at time t, which 
depends on the price (or load) at the final time.

Table 4: BDS test for daily IEP (2007-2010), after 
detecting outliers
Statistical test Daily IEP – bds. test (IEP_new.lin0)
BDS test BDS test data: IEP_new.lin0, embedding dimension 

m=23
P value =

[9.964] [19.928] [29.893] [39.857]
[2] 0 0 0 0
[3] 0 0 0 0

IEP: Iranian electricity price

Figure 9: Four part of daily Iranian electricity price time series (2007-2010), after taking first order difference. (a) First section of time series-after 
taking first order difference. (b) Second section of time series-after taking first order difference. (c) Third section of time series-after taking first 

order difference. (d) Fourth section of time series-after taking first order difference
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Figure 10: The autocorrelation function (ACF) and partial correlation function (PACF) from: (Left part) - Four sections of the Iranian electricity 
price (IEP) time series (a) ACF and PACF from the first section, (d) ACF and PACF from the second section, (g) ACF and PACF from the third 

section and (j) ACF and PACF from fourth section. (Middle part) Four sections of first order difference of IEP series (b) - ACF and PACF from the 
first section, (e) - ACF and PACF from the second section, (h) ACF and PACF from the third section and (k) ACF and PACF from fourth section). 

(Right part) - The ACF and PACF from squared (four sections) IEP time series, after taking the first order difference (c) ACF and PACF from 
square of first section, (f) ACF and PACF from square of second section, (i) ACF and PACF from square of the third section and (l) ACF and PACF 

from square of fourth section
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∅(B)Ф(BS)(1−B)(1−BD)Yt = Θ(BS)θ(B)et (2)

The “ϕ” coefficients associated with the autoregressive part of the 
model and the “p” value determines the order of the AR estimate. 
The “θ” coefficients related to the MA part of the ARIMA model 
and the “q” value indicate the order of MA. Here, operator B 
and BS are introduced as the backshift and seasonal operator 

parameters, respectively. In Equation (2), the period of seasonality 
in the ARIMA models is indicated by the symbol “s.” The “Φ” 
parameter is related to the seasonal part of the AR model. The 
parameter “Θ”is also related to the seasonal MA part of the model. 
Variables “P” and “Q” represent the order of the seasonal AR and 
MA part, respectively. The “D” (the seasonal part) shows the order 
of the seasonal difference.
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Figure 11: (a) Scatter plot of the daily Iranian electricity price and daily Iranian electricity load time series. (b) Scatter plot of the daily Spanish 
electricity price and daily Spanish electricity load time series

ba

Table 5: Estimated ARIMA models for SEP, IEL and SEL
Time series Estimated ARIMA models of daily electricity price-load time series in both market
Daily SEP 
time series

First ARIMA model for SEP time series

ARIMA (NA,0,0,0, NA,0, 
NA, NA, NA, NA)(1,1,0) 7

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 sar1 xreg
0.717 0 0 0 0.078 0 −0.261 0.170 −.1702 26.150

SE 0.022 0 0 0 0.025 0 0.042 0.036 0.042 12.983
σ2 estimated as 12.59: Log likelihood=−3121.41

Second ARIMA model for 
first section of IEP time 
series

First section 
of daily IEP 
time series

ARIMA (2,1,0)(1,0,1) 7 Coefficients:

ar1 ar2 sar1 sma1
−0.263 −0.140 0.758 −0.636

SE 0.052 0.052 0.129 0.152
σ2 estimated as 0.5525, log likelihood=−408.74, AIC=827.49

Third ARIMA model and 
SARIMA model for IEL 
time series

Daily IEL 
time series

ARIMA (2,0,0)(1,1,0) 7 Coefficients:

ar1 ar2 sar1
0.843 0.065 −0.456

SE 0.030 0.030 0.027
σ2 estimated as 976788: Log likelihood=−8923.38

SARIMA (3,1,0,1,1,0,52) 
or ARIMA (3,1,0)(1,1,0) 52

Coefficients:

ar1 ar2 ar3 sar1
−0.090 −0.066 −0.107 −0.507

SE 0.031 0.031 0.031 0.027
σ2 estimated as 197.6: Log likelihood=−4212.03

Fourth ARIMA model for SEL time series
Daily SEL 
time series

ARIMA (1,0,2)(1,1,0) 7 Coefficients:

ar1 ma1 ma2 sar1
0.833 −0.109 −0.069 −0.410
0.833 −0.109 −0.069 −0.410

SE 0.025 0.039 0.033 0.027
σ2 estimated as 96.79: Log likelihood=−3958.65, AIC=7927.3

AIC: Akaike information criterion, SEL: Spanish electricity load, ARIMA: Autoregressive integrated moving average, IEL: Iranian electricity load, IEP: Iranian electricity price, SE: 
Standard error, SEP: Spanish electricity price
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The t-value is “calculated as coefficient/standard error” of the 
estimated parameter in order to gain more information about 
the ARIMA models (refer to Cryer and Chan, 2008; Dahyot, 
2012; Tsay, 2005). The residual analysis of these estimated 
ARIMA models show that they are not fitted models. The ACF 
and PACF of square residuals for each time series are shown in 
Figures 12a-d and 13a, and they prove this claim.

We observe serial correlations in the residuals. For example, first 
part of the Iranian electricity time series is the Q-Q plot of this 
model, and it also shows a large, heavy tail in Figure 13b. This 

suggests the existence of volatility clustering in the residuals 
of these series (Tsay, 2005; Hu, 2011) (see Fig.12-all parts and 
Figures14a, d and e). The same analysis is applied to the IEL time 
series. Despite fitting the seasonal ARIMA model (or SARIMA 
[p, d, q, P, D, Q, S] model) to the time series, a similar result is 
obtained, i.e., volatility clustering in the residuals (Figures 13b 
and d; Figure 14b and c).

The SARIMA model has the same definition as the ARIMA 
model. Here, the (yearly) cycling behavior is added into this model 
(Shumway and Stoffer, 2010). Here, the seasonal period is equal 

Figure 12: The autocorrelation function (ACF) and partial correlation function (PACF) from (squared) residuals of estimated autoregressive 
integrated moving average (ARIMA) models, for Spanish electricity price and Iranian (and Spanish) electricity load time series. The ACF and 
PACF from the residuals of seasonal ARIMA (SARIMA) model for the Iranian electricity load time series (a) Residuals analysis of Spanish 

ARIMA electricity price model, (b) residuals analysis of Iranian ARIMA electricity load model, (c) residuals analysis of Spanish ARIMA electricity 
load model and (d) residuals analysis of Iranian SARIMA electricity load model
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ba
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to 52 weeks per year. We then take into account the yearly cycling 
behavior in our estimated SARIMA model. However, the ACF 
and PACF functions derived from the residual analysis of this 
model exhibit the serial correlation in the residuals (Figure 12d). 
Thus, due to conditional forecasting and temporal fluctuations 
in the data-variance, no ARIMA model is capable of accurately 
modeling such a time series.

To model these time series more accurately by investigating their 
residual patterns, we now employ the ARMA-GARCH model 
(Cryer and Chan, 2008; Wurtz et al., 2006).

2.3.2. ARMA–GARCH model for Spanish and Iranian price and 
load time series
Volatility is an important factor in electricity market time series 
analysis (Tsay 2005. p. 1, 20, 97; Benini et al., 2002). In general, 
it depends on a large number of parameters and factors, such as 
fuel prices, currency exchange rates, availability of generating 
units, etc. (Benini et al., 2002).

Due to the existence of uncertainty (heteroscedasticity), temporal 
fluctuations and conditional predictions of the data-variance in 
time series, ARIMA models are not suited to accurately analyzing 
the Iranian and SEPs and load time series (Cryer and Chan, 2008; 
Tsay, 2005; Wurtz et al., 2006). As we explained, the residual 
analysis of ARIMA models display (serial) correlations between 
the residuals in the first part of the IEP, the IEL, the SEP and the 
SEL time series. In addition, there is a non-constant volatility 
condition among them (Cryer and Chan, 2008; Tsay, 2005; Wurtz 
et al., 2006). As discussed in the previous section, the three 
parts of the IEP exhibit serial dependence within the variance of 
observations.

According to time series analysis approaches, we can employ 
ARMA-GARCH models to investigate and estimate these cluster 
patterns in each time series (Cryer and Chan, 2008; Tsay, 2005). 

Therefore, we apply the ARMA-GARCH models referred to as 
conditional heteroskedastic (or non-constant variance) models 
(Cryer and Chan, 2008; Tsay, 2005; Wurtz et al., 2006). As 
demonstrated before, the IEP time series exhibits nonlinear 
behavior. With three break points in the time series, each segment’s 
behavior has to be modeled separately by using the ARMA-
GARCH model. Thus, the aggregation of all ARMA-GARCH 
models obtained for the four sections of the IEP time series 
result in an ARMA-TGARCH model (Hu, 2011; Di Narzo, 2008; 
Hossain et al., 2011; Muñoz et al., 2007; Tsay, 2005; Wurtz et al., 
2006; Zhang, 2009). Next, we derive the ARMA-TGARCH model 
for the IEP time series. Subsequently, we present the estimated 
ARMA-GARCH model for the three time series of the IEL, the 
SEP and the SEL.

We define the µt and the standard deviation, σt, for the time series 
by:

µt = E(rt│Ft−1), σ
2 = Var(rt|Ft−1) = E[(rt−μt)

2│Ft−1)] (3)

Then, the general ARMA-GARCH models are described in this 
way:

p q

t i t 1 j t j t
i 1 j 1

 r r a a  − −
= =

= + + +∑ ∑  (4)

at = σtεt

m s
2 2 2
t 0 i t 1 j t 1 t

i 1 j 1
 a a    − −

= =

= + + +∑ ∑  (5)

The return, “rt,” follows the ARMA (p, q) part of these models 
and “at” is distinguished as the noise term of the ARMA model 
in Equation (4). It is introduced as one parameter of the GARCH 
model in Equation (5) (Tsay, 2005; Wurtz et al., 2006; Zhang, 
2009). Here, the Gaussian white noise with unit variance is 
introduced by parameter “εt.” An aggregation of the α and β is 
also desirable in Equation (5), which will be <1. These coefficients 

Figure 13: (a) The autocorrelation function and partial correlation of (squared) residuals from the estimated autoregressive integrated moving 
average (ARIMA) model for the first section of the daily Iranian electricity price time series. (b) Q-Q plot of the first section of the Iranian ARIMA 

electricity price model
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α and β should be positive in order to be stationary with a finite 
variance (Tsay, 2005; Wurtz et al., 2006; Zhang, 2009). The 
parameters “ 2

t  ” are related to the conditional variance and 
heteroscedasticity (Tsay, 2005; Wurtz et al., 2006; Zhang, 2009). 
Table 6 presents the ARMA-GARCH model parameters obtained 
for the IEL time series (after taking the seasonal difference and 
the first difference) as well as the SEL and price time series (after 
taking the seasonal difference).

In Table 7, after taking the first difference from each part of the 
IEP time series, we estimate an ARMA-TGARCH model for 
four parts of the IEP. Although the Q-Q plots and histogram of 
the residuals prove that these models for our four time series 
do not exactly exhibit a Gaussian distribution, the heavy tail 
decreases significantly (Figures 15 - left part and 16 - left 
part). In particular, Tables 6 and 7 also demonstrate the results 

obtained from Shapiro–Wilk, and the standardized residuals 
suggest that all-time series do not follow a Gaussian distribution 
(Zhang, 2009). The ARMA-GARCH model estimated for the 
fourth section of the IEP time series demonstrates a skewed-
generalized error distribution for the conditional variance 
(Zhang, 2009) (for analyses given in Tables 6 and 7, the 
significance level is 0.05).

According to the ACF and PACF plots shown in Figures 15 - right 
part and 16 - right part, no volatility and serial correlation among 
the residuals is observed, and therefore our modeling approach is 
valid (Cryer and Chan, 2008; Tsay, 2005).

Furthermore, the polyroot test is applied in order to find the zeros 
of polynomials in the AR part of these developed ARMA-GARCH 
models Table 8. The results of this test indicate that there are not 

Figure 14: Residual behavior of all our autoregressive integrated moving average (ARIMA) models and seasonal ARIMA (SARIMA) model 
(a) Residuals of autoregressive moving average (ARMA) model related to first section of Iranian electricity price time series, (b) residuals of 
ARMA model related to Iranian electricity load (IEL) time series, (c) residuals of SARIMA model related to IEL time series, (d) residuals of 

ARMA model related to Spanish electricity price time series, (e) residuals of ARMA model related to Spanish electricity load time series
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any kinds of roots in our models (Pfaff, 2008; Box et al., 2008). 
This also verifies the validity of our developed models.

3. RESULTS

3.1. Comparison of Models
In the previous section, we discussed our model estimation 
approach for each market and their corresponding time series. 
Here, we compare different models for each market. As presented 
in Table 9, due to the volatility clustering of the residuals, the 
classical ARIMA models did not perform well and could not be 
employed to estimate the time series of the daily SEP, daily SEL, 
the IEL, and the first part of the IEP. Furthermore, the computed 
mean square error (MSE) values (Wu and William, 1994) are 
significantly higher than the average values found for the ARMA-
GARCH models (except for the first part of the IEP). Unlike the 
SEP time series, we cannot find a suitable ARMA-GARCH model 
to estimate the serial dependence of the variance in the time series, 
due to the nonlinear behavior of the IEP. Therefore, the ARMA-
TGARCH model is suggested for better estimation of the IEP 
time series. For each part of the IEP time series, the MSE related 
to the ARMA-GARCH is very low. Moreover, the average values 
for the ARMA-TGARCH model are also very low. In addition, 
there is no serial correlation among the residuals computed for 
this model or for each ARMA-GARCH model related to each 
section. It is similar to our other estimated ARMA-GARCH 
models. Therefore, these results suggest that the best model for 
predicting and describing the behavior of the IEP time series is the 
ARMA-TGARCH model. Meanwhile, ARMA-GARCH models 
with specific coefficients are the best suited models for estimating 
all the other time series.

3.2. Forecasting the IEP and Load
Finding more strategic knowledge about the Iranian electricity 
market leads us to present a forecasting for the IEP and IEL. 
This prediction helps us to know the behavior of the price and 
load as important elements in this market. Because as we know, 
for example, that electricity price forecasting will be helpful for 
market players, particularly generating companies who must 
manage their units and the associated economic risk (Benini et al., 
2002). Here, the forecasting is represented for around 14 days. For 
the IEP, we make a prediction out-of-sample via the fourth part of 
the ARMA-TGARCH model in Table 10.

We also forecast and predict the IEL out-of-sample via the ARMA-
GARCH model (Table 10), as it is the best of our estimated 
model. These predictions are presented in Figures 17 and 18. 
In Tables 11 and 12, our forecasting for price and load are also 
described. We observe our forecasting to be within the confidence 
intervals at a 95% level. These results indicate that our estimated 
models for electricity price and load are strongly fitting models 
for distinguishing the behavior of price and load in this market.

4. DISCUSSION

This study has attempted to address whether or not the Iranian 
electricity market can be categorized as a liberalized and 
competitive market. Nowadays, fundamental progress has 

Table 6: Estimated ARMA-GARCH models for SEP, IEL 
and SEL time series
First - ARMA-GARCH model - SEP time series, after taking the 

seasonal difference
R Code (1)- garchFit (~arma (1,7) +garch (1,1), data=d7.

spainprice, [1:1168], trace=F, cond.dist=“std”)
ARMA-GARCH model. Error analysis: 

Coefficient (s)
Estimate SE t-value Pr(>|t|)

mu 0.029 (μ) 0.070 0.421 0.674
ar1 0.566 (φ1) 0.051 11.086 <2e-16***
ma1 0.164 (θ1) 0.037 4.375 1.21e-05***
ma2 0.152 (θ1) 0.035 4.247 2.16e-05***
ma3 0.145 (θ1) 0.034 4.265 2.00e-05***
ma4 0.156 (θ1) 0.033 4.691 2.72e-06***
ma5 0.145 (θ1) 0.032 4.484 7.34e-06***
ma6 0.141 (θ1) 0.031 4.468 7.91e-06***
ma7 −0.748 (θ) 0.032 −23.371 <2e-16***
omega 0.039 (α0) 0.021 1.838 0.066
alpha1 0.069 (α) 0.013 5.170 2.34e-07***
beta1 0.928 (β) 0.012 75.088 <2e-16***
shape 10.000 2.384 4.194 2.74e-05***
Second - ARMA-GARCH model - SEL time series, after taking 

seasonal difference
R Code (2)- garchFit (formula=~arma (1, 7)+garch (1, 1), 
data=d7.loadspain[1:1168], cond.dist=“norm”, trace=F)

ARMA-GARCH model. Error analysis:
Coefficient (s)

Estimate SE t-value Pr(>|t|)
mu 0.979 (μ) 1.265 0.774 0.439
ar1 0.419 (φ1) 0.090 4.653 3.28e-06***
ma1 0.346 (θ1) 0.076 4.551 5.33e-06***
ma2 0.333 (θ2) 0.074 4.474 7.69e-06***
ma3 0.336 (θ3) 0.073 4.575 4.76e-06***
ma4 0.334 (θ4) 0.072 4.598 4.26e-06***
ma5 0.324 (θ5) 0.072 4.484 7.31e-06***
ma6 0.324 (θ6) 0.071 4.550 5.36e-06***
ma7 −0.618 (θ7) 0.070 −8.748 <2e-16***
omega 80.264 (α0) 14.995 5.353 8.67e-08***
alpha1 0.293 (α) 0.046 6.295 3.08e-10***
beta1 0.570 (β) 0.055 10.192 <2e-16***
Third - ARMA-GARCH model-IEL time series, after taking the 

seasonal and first non‑seasonal differences
R Code (3)-garchFit (formula=~arma (2, 8)+garch (1, 1), 
data=d7d1.loadiran[1:1073], cond.dist=“std”, trace=F)

ARMA-GARCH model. Error analysis:
Coefficient (s)

Estimate SE t-value Pr(>|t|)
mu** 0.014 (μ) 0.019 0.755 0.450
ar1 0.683 (φ1) 0.058 11.704 <2e-16***
ar2 −0.022 (φ2) 0.045 −0.488 0.625
ma1 −0.877 (θ1) 0.049 −17.625 <2e-16***
ma2 0.029 (θ2) 0.035 0.824 0.409
ma3 0.007 (θ3) 0.026 0.284 0.776
ma4 0.018 (θ4) 0.026 0.699 0.484
ma5 −0.005 (θ5) 0.025 −0.234 0.815
ma6 −0.020 (θ6) 0.027 −0.740 0.459
ma7 −0.661 (θ7) 0.027 −23.712 <2e-16***
ma8 0.594 (θ8) 0.033 17.635 <2e-16***
omega 6.603 (α0) 3.499 1.887 0.059
alpha1 0.193 (α) 0.053 3.641 0.0002***
beta1 0.768 (β) 0.0695 11.053 <2e-16***
shape 3.977 0.539 7.378 1.61e-13***
The symbols in parenthesis (such as μ, φ1, θ1) are not related to our R code. They are 
introduced as related to each parameter in the ARMA-GARCH model. ARMA-GARCH: 
Autoregressive moving average-generalized autoregressive conditional heteroskedastic, 
SEL: Spanish electricity load, IEL: Iranian electricity load, SEP: Spanish electricity price

https://www.google.com/search?client=firefox-a&hs=LEq&rls=org.mozilla:en-US:official&channel=np&q=parenthesis&spell=1&sa=X&ei=yBh0VILeBumrjALQ-YDICg&ved=0CBwQvwUoAA&biw=1047&bih=466
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been made within the current technical establishments and 
infrastructure of the Iranian electricity market, given that the 
government supports the idea of moving towards privatization 
and a deregulated market status rather than a pure governmentally 
controlled state. According to the new interpretations obtained 
from Article 44 of the Iranian Laws, this market is going to be 
a “free” market. This investigation is useful in understanding 
how the market mechanism shall be after having fundamentally 
improved the dimensions of each electricity market. Toward this 
goal, we have presented a time series approach that employs linear 

and non-linear models using price and load as the main factors. 
We further compared the market in Iran with that in Spain. Such 
a comparison enlightens how Iranian electricity market behavior 
can be compared to a developed market. With further comparisons 
to the studies mentioned above, this research has also provided 
insights into the Iranian electricity market’s level of competition.

We also investigated the role of load determination in the Iranian 
electricity market and additionally presented a forecasting of the 
IEP and load, in order to clarify its behavior. We further suggested 

Table 7: ARMA-TGARCH estimated models for IEP time series
First ‑ ARMA‑GARCH model for first part Second - ARMA-GARCH model for second part
R-cod (4)
garchFit (formula = ~arma (0, 1) + garch (1, 1), data=iran.pr.d1)

R-code (5)
garchFit (formula = ~arma (0, 1) + garch (1, 1), data=iran.pr.d2)

ARMA-GARCH model-error analysis:
Coefficient (s)
                Estimate       SE     t-value   Pr(>|t|)
mu          0.0002(μ)*   0.026   0.009    0.992
ma1        −0.264(θ1)   0.059   −4.463  8.07e-06***
omega    0.029(α0)     0.014   1.983    0.047*
alpha1    0.120(α)      0.043    2.767    0.006**
beta1      0.836(β)      0.050    16.679  <2e-16***
Standardised residuals tests:
                                                      Statistic     P value
Jarque-Bera test    R   Chi-square 114.386      0
Shapiro-Wilk test  R    W              0.972        1.97e-06
Ljung-Box test      R     Q (10)      7.710        0.061
Ljung-Box test     R      Q (15)      24.965      0.051
Ljung-Box test     R      Q (20)      29.436      0.079
Ljung-Box test     R2    Q (10)       6.335        0.786
Ljung-Box test     R2    Q (15)       7.738        0.933
Ljung-Box test     R2    Q (20)       12.019      0.915
LM ARCH test     R     TR2            8.166        0.771 

ARMA-GARCH model-error analysis:
Coefficient (s)
               Estimate        SE          t-value     Pr(>|t|)
mu          0.012 (μ)      0.028      0.430       0.667
ma1        −0.287(θ1)    0.083      −3.430     0.000***
omega    0.088(α0)      0.024      3.566       0.000***
alpha1    0.456(α)       0.115      3.954       7.68e-05***
beta1      0.540(β)       0.078      6.901        5.16e-12***
Standardised residuals tests:
                                                        Statistic       P value
Jarque-Bera test     R    Chi-square   1467.688    0
Shapiro-Wilk test   R    W                 0.834         1.599e-14
Ljung-Box test       R    Q (10)           6.574         0.764
Ljung-Box test       R    Q (15)           9.454         0.852
Ljung-Box test       R    Q (20)          11.976        0.916
Ljung-Box test      R2    Q (10)          1.300          0.999
Ljung-Box test      R2    Q (15)          1.533          0.999
Ljung-Box test      R2     Q (20)         1.766          1
LM ARCH test      R     TR2              1.683           0.999 

Third-ARMA-GARCH model for third part Fourth-ARMA-GARCH model for fourth part
Rcod (6)
garchFit (formula=~arma (0,1)+garch (1,1), data=iran.pr.d2)

R-code (7)
garchFit (formula = ~arma (0, 1) + garch (1, 2), data=iran.pr.d4, 
cond.dist = “norm”)

ARMA-GARCH model-error analysis:
             Estimate     SE        t value   Pr(>|t|)
mu        0.019 (μ)    0.019   1.010     0.313
ar1        0.656 (φ1)   0.166   3.942     8.07e-05 ***
ma1      −0.768 (θ1)  0.161  −4.768   1.86e-06 ***
omega  0.055 (α0)    0.041   1.320     0.187
alpha1  0.126 (α)     0.061   2.064     0.039 *
beta1    0.833 (β)     0.077   10.820  <2e-16 ***
shape   10.000         6.893   1.451    0.147
Standardised Residuals Tests:
                                                        Statistic      P value
Jarque-Bera test     R   Chi-square  4.787          0.091
Shapiro-Wilk Test  R    W               0.988          0.041
Ljung-Box test       R    Q (10)        14.211        0.163
Ljung-Box test       R    Q (15)        24.238        0.061
Ljung-Box test       R    Q (20)        28.201        0.104
Ljung-Box test       R2   Q (10)       6.524          0.769
Ljung-Box test       R2   Q (15)       23.599        0.072
Ljung-Box test       R2   Q (20)       27.454        0.122
LM ARCH test       R     TR2           8.170         0.771

ARMA-GARCHmodel-Error Analysis:
             Estimate        Std. Error    t value    Pr(>|t|)
mu        −0.056(μ)       0.031          −1.816   0.0692
ma1#    −0.304 (φ1)    0.083          −3.63     0.000 ***
omega   0.014(α0)       0.015          0.979     0.327
alpha1   0.277 (α1)      0.081          3.431     0.000 ***
beta1     0.107 (β1)      0.135          0.791     0.429
beta2     0.642(β2)       0.143          4.460     8.19e-06 ***
Standardised residuals tests:
                                                          Statistic      P value
Jarque-Bera test    R       Chi-square 9.963          0.006
Shapiro-Wilk test  R       W               0.987          0.031
Ljung-Box test      R       Q (10)        13.293        0.207
Ljung-Box test      R       Q (15)        30.230        0.011
Ljung-Box test      R       Q (20)        38.084        0.008
Ljung-Box test      R2     Q (10)        13.853        0.179
Ljung-Box test      R2     Q (15)        16.474        0.351
Ljung-Box test      R2     Q (20)        19.848        0.467
LM ARCH test     R        TR2           13.978        0.302

The symbols in parenthesis (such as μ, φ1, θ1, etc.) are not related to our R code. They are introduced as related to each parameter in the ARMA-GARCH model. ARMA-GARCH: 
Autoregressive moving average-generalized autoregressive conditional heteroskedastic, IEP: Iranian electricity price, LM: Lagrange multiplier, ARCH: Autoregressive conditional 
heteroskedastic
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Figure 15: Right part: Histogram of autoregressive moving average (ARMA) generalized autoregressive conditional heteroskedastic (GARCH) 
models from the Iranian electricity load (IEL) and Spanish electricity load (SEL) and price series (First) Histogram - Residuals analysis of Iranian 
ARMA-GARCH electricity load model, (Second) Histogram - Residuals analysis of Spanish ARMA-GARCH electricity load model and (Third) 

Histogram - Residuals analysis of Spanish ARMA-GARCH electricity price model. Left part: The autocorrelation function (ACF) and partial 
correlation function (PACF) from (square of) residuals of the estimated ARMA GARCH models for IEL, SEL and Spanish electricity price (SEP) 
time series (First - ACF and PACF of ARMA-GARCH model - IEL time series, Second - ACF and PACF of ARMA-GARCH model - SEL time 

series and Third - ACF and PACF of ARMA-GARCH model - SEP time series
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Figure 16: Left part: Residuals analysis (Histogram and Q-Q plots of autoregressive moving average (ARMA)-T generalized autoregressive conditional 
heteroskedastic (GARCH) model from the Iranian electricity price (IEP) time series (for four sections of time series). Right part: The autocorrelation 
function and partial correlation function from (squared) residuals of the estimated ARMA-TGARCH models from each section (of IEP time series)
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that no significant relationship exists between the price and load 
in the Iranian electricity market, and we question claims that have 
been made regarding its liberalization and decentralization.

5. CONCLUSIONS AND POLICY 
IMPLICATIONS

The current study employed time series analyses to investigate 
the policies implemented by the Iranian government towards 
a decentralized and competitive Iranian electricity market. 
As a benchmark for such a free market and for the sake of 
comparison, we conducted our analyses for both Iran’s and 
Spain’s electricity markets. To carry out our modeling, two 
important factors (price and load) in time series data from both 
markets were chosen.

For IEL, SEP and SEL time series, seasonality impacts the process 
of estimating a valid model for each time series. In addition, 
analyzing the estimated models (such as ARIMA models) of these 

Table 8: Univariate analysis of stationarity for four estimated ARMA-GARCH models
R Code: Mod (Polyroots (1,φi)) For The estimation mod of poly roots test for AR parts of each ARMA-GARCH model
ARMA-GARCH models of SEP time series Estimation of AR (1)-process with φ1=0.566: 1.766
Second part of IEP Estimation of AR (1)-process with φ1=0.656: 1.766
SEL time series Estimation of AR (1)-process with φ1=0.419: 2.386
IEL time series Estimation of AR (2)-process with φ1=0.683, φ2=0.022: 1.401, 32.027
ARMA-GARCH: Autoregressive moving average-generalized autoregressive conditional heteroskedastic, SEL: Spanish electricity load, IEL: Iranian electricity load, SEP: Spanish 
electricity price, IEP: Iranian electricity price, AR: Autoregressive

two indices proved the significant role of volatility and serial 
correlation among our observations in each time series, suggesting 
the influence of other factors in these energy markets. For example, 
our research into SEP shows that the electricity generation by wind 
in Spain impacts the electricity market price.

ARMA-GARCH models, also known as heteroskedastic time 
series models, were employed and further verified using the MSE 
tests to estimate the behavior of IEL, SEP and SEL.

Unlike the Spanish electricity market, our analysis suggests that 
the Iranian electricity market price exhibits a fully-nonlinear 
behavior. This is confirmed by the existence of break points and 
structural changes in the data trends. Therefore, in contrast to the 
Spanish market, the Iranian electricity market price time series 
is estimated by an ARMA-TGARCH model. We further utilized 
several ARMA-GARCH models to accurately forecast the price/
load, taking into account nonlinear behavior in the market. We 
note that our analysis also demonstrates similar patterns in the 
SEP and each parts of the IEP time series, since IEP is also fitted 

Table 9: Comparison of our estimated models for each market time series
Estimated models Model 

validation
Residual 
validation

Data MSE

Models for IEP time series Make a comparison from all of estimated models for daily Iranian electricity price 
models

ARIMA model for first part (1-365) Not valid Volatility First part of Iranian electricity price 
time series

0.550

ARMA-TGARCH model Valid-accepted No volatility All IEP time series after taking the first 
difference

0.978

ARMA-GARCH model - for first part (1-365) Valid No volatility First part of time series after taking the 
first difference

1.001

ARMA-GARCH model - for second part (365-586) Valid No volatility Second part of time series after taking 
the first difference (366-584)

1.004

ARMA-GARCH model - or third part (585-845) Valid No volatility Third part of time series after taking the 
first difference

0.992

ARMA-GARCH model - for fourth part (846-1095) Valid No volatility Fourth part of time series after taking 
the first difference.

0.916

Models for SEP time series Make a comparison from all of estimated models for daily SEP models
ARIMA model Not valid Volatility time series 12.579
ARMA-GARCH model Valid-accepted No volatility Daily SEP time series after seasonal 

difference series
0.980

Models for IEL time series Make a comparison from all of estimated models for daily IEL models
ARIMA model Not valid Volatility Total time series 97.847
SARIMA Not valid Volatility IEP time series 187.985
ARMA-GARCH model Valid-accepted No volatility Daily IEL time series after seasonal and 

non-seasonal difference
0.958

Models for SEL Make a comparison from all of estimated models for daily SEL models
ARMA model Low valid volatility Total time series 735.041
ARMA-GARCH model Valid-accepted No volatility daily SEL time series after taking 

seasonal difference
0.998

ARMA-GARCH: Autoregressive moving average-generalized autoregressive conditional heteroskedastic, SEL: Spanish electricity load, SEP: Spanish electricity price,  
SARIMA: Seasonal ARIMA: Autoregressive integrated moving average, IEL: Iranian electricity load, IEP: Iranian electricity price
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Figure 17: Forecasting the Iranian electricity price (for 14 days). Red 
points in our figures show forecasting. Black line shows the real price. 

The green and blue lines show the confidence intervals

Figure 18: Forecasting the Iranian electricity load (for 14 days). Red 
points in our figures show forecasting. Black line shows the real load 

the green and blue lines show the confidence intervals

by means of an ARMA-GARCH model. On the other hands, for 
the Spanish electricity market, both indices (i.e., price and load) 
follow a similar pattern and are estimated via ARMA-GARCH 

models. Our investigation suggests that the Iranian and Spanish 
electricity markets exhibit a fundamental difference concerning 
the behavior of load and price time series.

Table 10: Mathematical equation of price and load-estimated models for forecasting in Iranian electricity market
For Iranian electricity price time series Mathematical equations of price and load-estimated models
ARMA-TGARCH model For IEP time series
A - For first section ARMA-GARCH model rt=at−0.264at−1

at=σtεt
2 2 2

t t 1 t 10.029 0.121 0.8360− −σ = + ε + σ

B - For second section ARMA-GARCH model rt=at−0.287at−1

at=σtεt

σ ε σ
t t t

2 2

1 1

2
0 088 0 456 0 541= + +− −. . .

C - For third section ARMA-GARCH model rt−0.656 rt−1 = at−0.768 at−1

at=σtεt
2 2 2
t t 1 t 10.126 0.833 − −= ε +

D - For fourth section ARMA-GARCH model rt=−0.056+at−0.304 at−1
at=σtεt

σ ε σ
t t t

2

1

2

2

2
0 277 0 642= +− −. .

ARMA-GARCH model For IEL time series
E - ARMA-GARCH model rt−0.683rt−1 + 0.022rt−2 = at−0.877at−1 − 0.661at−7 − 0.594at−8

at=σtεt

σ ε σ
t t

2 2 2

1
6 603 0 193 0 768= + + −. . .

ARMA-GARCH: Autoregressive moving average-generalized autoregressive conditional heteroskedastic, IEL: Iranian electricity load, IEP: Iranian electricity price
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Table 11: Forecasting IEP and comparing it with the real 
electricity price
No. The real 

observations
With 95% 
confidence 
intervals

Forecast 
from Iranian 

electricity 
price

Sigma.t

Lower Higher
1 81.567 81.249 82.263 81.756 0.253
2 80.959 80.586 81.709 81.148 0.280
3 80.602 80.375 81.206 80.791 0.207
4 80.680 80.042 81.697 80.869 0.413
5 81.945 81.502 82.767 82.134 0.316
6 82.788 82.296 83.657 82.977 0.340
7 85.995 85.627 86.742 86.184 0.278
8 86.371 85.902 87.218 86.560 0.329
9 89.267 89.004 89.909 89.456 0.226
10 90.479 90.078 91.258 90.668 0.294
11 92.244 92.063 92.804 92.433 0.185
12 90.273 89.980 90.945 90.462 0.241
13 86.759 86.591 87.305 86.948 0.178
14 84.817 84.618 85.394 85.006 0.193
IEP: Iranian electricity price

Table 12: Forecasting the IEL and comparing it with the 
real electricity load
No. The 

observations
With 95% 
confidence 
intervals

Forecast 
from IEL

Sigma.t

Lower Higher
1 471.820 467.685 483.192 475.438 2.584
2 480.732 473.789 494.912 484.350 3.520
3 490.825 482.390 506.497 494.444 4.017
4 487.799 477.529 505.306 491.418 4.629
5 481.953 470.797 500.346 485.571 4.924
6 467.535 456.079 486.228 471.153 5.024
7 445.419 433.725 464.350 449.037 5.104
8 483.004 466.118 507.128 486.623 6.834
9 487.357 468.465 513.486 490.976 7.503
10 493.221 475.627 518.054 496.840 7.071
11 491.768 474.509 516.264 495.387 6.959
12 494.275 477.959 517.829 497.894 6.644
13 491.922 476.342 514.740 495.541 6.399
14 463.136 442.894 490.617 466.755 7.953
IEL: Iranian electricity load

Our study strongly suggests that the rate of load does not influence 
the Iranian electricity market’s price in a meaningful way. In 
other words, the scatter plots of these time series for each country 
suggests that, unlike Spain, the Iranian electricity market does 
not exhibit a clear relationship between load and price indices, 
which rejects the existence of any meaningful dependency on 
price volatility and load in the Iranian market. According to the 
principles of economic theories, our results indicate that the Iranian 
electricity market cannot be considered a free competitive market 
(Nicholson and Snyder, 2011).

The importance of forecasting in energy markets policy led us to 
short-term predictions for each index separately: IEP and IEL. 
This forecasting employed the best fitting models in this study. 
Our prediction also clearly shows the different behavior patterns 
amongst these indices (factors) in the future Iranian electricity 
market.

Considering the modeling and analysis we performed for 
both markets, the state of the Iranian electricity market can be 
recognized as a non-free/centralized market. Furthermore, this 
calls into question the policies implemented toward a decentralized 
and private Iranian market.

For any meaningful improvement towards a free market, potential 
policy reforms need to be implemented by policy makers. These 
policies may be limited not only to technological improvements 
but also to the current challenges facing Iran and the Iranian 
market, i.e., international sanctions, the Iranian political economy, 
the inflation rate, and law-making policies. In addition, it will be 
fruitful for future research to investigate the impact on pricing of 
other micro- and macroeconomic factors, such as gas/oil price, 
the US dollar/Rial exchange rate, and other political factors 
(e.g., the Iranian government’s strategies regarding international 
embargos).
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