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ABSTRACT

The purpose of this study is to investigate short and long run relationships between electricity spot prices in Greece, Brent oil, natural gas, lignite fuel 
cost and carbon allowances using daily data from 2007 to 2014. Static and dynamic Johansen test are applied in order to identify long run relations 
and also to assess the evolution over time in the level of cointegration. Additionally we test for Granger Causality in a Vector error correction model 
and embrace impulse response and variance decomposition techniques to model the dynamic response of electricity prices in excitation of another 
variable. Overall our results suggest an important long run relation between spot electricity prices in Greece, natural gas price and carbon allowances, 
while in the short run electricity prices are not affected by any of the other variables, results that are of practical importance for the market regulator 
as well as the wholesale market participants.
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JEL Classifications: C4, C5, C8

1. INTRODUCTION

In this paper we examine the long-run relations and short-run dynamics 
between the wholesale electricity prices and prices for three other 
fossil fuels - lignite, natural gas and Brent Oil – as well as EUA futures 
contract prices, using daily data of the Greek Electricity Market 
(GEM) and Intercontinental Exchange (ICE) over 2007–2014. More 
specifically, this work attempts to address the following issues:
a. The existence of a (unique) long-run relation between spot 

electricity prices and the costs associated with the above fuels 
and the EUA cost, and the nature of that relationship, if it exists,

b. The short-run dynamics of the above mentioned relationships, 
and more specifically the detection of causal relations and their 
direction between spot or System Marginal Price (SMP) and 
fuel and EUA costs,

c. The detection of responses of SMP to various exogenous 
shocks occurred in one of the fuel or the EUA markets,

d. The impact of the shocks in each fuel market on the dynamic 
evolution of the SMP.

Shedding light on these issues is extremely useful for the 
following reasons. In the GEM both lignite and natural gas 
play an important role in the electricity generation mix. As it 
is described in section 4, Table 1 and Figure 1, the share of 
lignite and Natural gas, over the period 2004–2014, follow 
a different direction: Lignite share decreases from 0.66 of 
the total generation production mix, without accounting for 
imports, in 2004 to 0.52 in 2015, while the share for natural 
gas increases from 0.16 to 0.22 in the same period, as can be 
seen in Figure 2.
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Therefore, changes in lignite and natural gas prices are expected 
to have a direct and significant effect on the cost of generating 
electricity and consequently on its wholesale price. Brent Oil 
is expected to have and indirect effect on the formation of 
SMP through mainly changes in market sentiments since its 
share on the generation mixture is almost negligible resulting 
in insignificant also direct effect on the electricity generation 
cost. Another reason is that fuel prices, due to the fact that they 
can be considered as substitutes on the demand-side of the 
energy market, fuel prices may also affect electricity prices. The 
“paradigm shift” from “cost-based” pricing to “market-based” 
pricing as a result of the liberalization and restructuring of the 
electricity sector (unbundling of generation, transmission and 
distribution operations), may have contributed to the changes in 
the dynamics of wholesale electricity prices. According to the 
conventional cost-based approach of pricing, SMP should reflect 
a mark-up over marginal costs. Instead, under the market-based 
pricing approach, SMP should reflect fuel costs in the long run. 
From a policy perspective, an in depth understanding of the long 
run dynamics of interdependence between the aforementioned 
“assets,” is very important, for example, in designing “fair” tax 
mechanisms in these markets (Yucel and Guo, 1994). Finally, but 
equally important, is the detection of the degree of integration of 
GEM and its various energy sources substitutability. The existence 
of long and short-run relations among SMP and fuel and EUA costs 
is examined by using cointegration and vector error correction 
model (VECM) to capture the direction of causality among them. 

In summary, the spot electricity price is a function of fuel prices 
and CO2 allowances (EUA).

For electric utilities and National Regulators, a good understanding 
of the wholesale electricity price is very crucial, given that this 
price is the underline asset in futures and options markets that 
in turn serve several purposes for these energy players, as price 
discovery, trading, valuation and hedging.

Figure 1: Time evolution of generation mix (in TWh) in GEM, 2004-2015

Figure 2: The evolution of the shares of Lignite’s and Natural Gas 
from 2004 to 2005

Table 1: Fuel-mix generation 2004-2015 in the Greek Interconnected System
2004  

(ΤWh)
2005  

(ΤWh)
2006  

(ΤWh)
2007  

(ΤWh)
2008  

(ΤWh)
2009  

(ΤWh)
2010  

(ΤWh)
2011  

(ΤWh)
2012  

(ΤWh)
2013  

(ΤWh)
2014  

(ΤWh)
2015  

(ΤWh)
Lignite 32.5 32.1 29.8 31.1 29.9 30.5 27.4 27.6 27.6 23.2 22.7 19.4
Fuel oil 2.69 3.30 3.31 3.26 3.51 1.69 0.11 0.01 0.08 0.08 1.46 0.84
Natural gas 8.1 7.9 10.2 13.2 13.3 9.4 10.4 14.9 14.1 12.2 7.5 8.4
Large hydro 4.93 5.42 6.22 3.14 2.97 4.96 6.70 3.68 3.89 5.64 3.91 5.39
RES 0.757 0.894 1.13 1.31 1.57 1.88 2.04 2.53 3.11 3.38 3.06 3.91
Total local 
generation

48.9 49.6 50 52 51.3 48.5 46.6 48.6 48.8 44.4 37.3 37.0

Net imports 2.82 3.78 4.20 4.35 5.61 4.37 5.70 3.23 1.78 2.10 8.92 9.61
Grand total 51.7 53.4 54.2 56.4 56.9 52.8 52.4 51.9 50.4 46.5 45.9 46.7
Source: ADMIE S.A
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Continental Europe electricity markets are dominated by a very 
large amount of fossil-fuel electricity generation, so fundamental 
power system economics suggest that a strong interaction between 
spot price and its related fuel and CO2 allowances market prices 
must exist. A natural assumption resulted from the above is that 
lignite (in Greece) or hard coal in general is at the margin, which 
means that crude oil (in our study Brent Oil) is not expected to 
have an effect in shaping SMP directly, since only a small share 
of European Power plants is Oil-fired.

Taking into consideration the above mentioned a priori economic 
relationships, the most natural to follow modelling approach seems 
to be a simultaneous equations model (SEM), highly parameterized 
and “full” of necessary assumptions regarding price setting 
mechanism and market “architecture.” The model specifications 
therefore might be complicated and possibly wrong, resulting in 
misleading outputs.

Another reason for not adopting a SEM approach is that this 
type of model is not capable in capturing the dynamic relations 
between the input fuels and EUA, because in SEM lagged values 
of variables are considered to be exogenous. Thus, in this work 
we have adopted a VECM in order to determine interactions 
between the variables considered and capture long-run economic 
interdependences and short-rum dynamics from time series.

At the best of our knowledge the co-movement or level of 
integration between fossil fuel prices and electricity prices in 
Greece and an in depth understanding of possible different 
dynamics occurring in these markets has not been investigated. 
The purpose of this study is mainly to analyze the aforementioned 
level of integration in order to capture possible different long run 
or short run dynamics caused by a different level of deregulation 
of the fossil fuels and electricity markets in Greece. A cointegration 
relationship plays a crucial role since it provides arbitraging 
opportunities among the various commodities, an extremely 
important “variable” for the pricing of derivatives consisting of 
couple of commodities and options based on spreads.

The remainder of this work is organized as follows. In section 2 we 
provide a brief review of the most relevant to this work literature. 
In section 3 the background theory is presented, i.e., a short 
description on structural vector autoregression (VAR), Granger 
Causality, impulse response (IR) and finally on the VECM. The 
Greek Electricity market, the data set used and all necessary tests 
performed on the data (stationarity, Johansen Cointegration tests), 
are described in section 4. The estimation of the VECM model is 
given in section 5 and finally section 6 summarizes and outlines 
a number of policy implications.

2. BRIEF REVIEW OF RELEVANT 
LITERATURE

Fundamental or VAR-structural models, try to capture the basic 
physical and economic relationship present in the generation and 
trading of electricity. Johnsen (2001) presented a supply-demand 
model for the Norwegian power market. He used hydro inflow, 

snow and temperature data to model the dynamics of spot price. 
Vahvilainen and Pyykkonen (2005) constructed a model to capture 
the dynamics of hydrological inflow and snow-pack formation that 
impact hydro electricity generation. The successful model captured 
the observed fundamentally driven market price movements.

Fundamental models suffer from two major “drawbacks” (Weron, 
2006): (a) Data availability and (b) the unavoidable incorporation 
of stochastic fluctuations of the fundamental variables. For the first, 
depending on the market and the role of the player, information on 
plant generation, costs, load profile and transmission constraints 
may be, more or less, available to build such a model. For the 
second challenge, the specific assumptions made regarding 
physical and financial relationships in the market, have a crucial 
impact on the forecasting of spot prices, given the significant 
sensitivity of the model’s behavior on the assumptions. So, there 
exists a significant modeling risk in the application of the VAR 
approach.

Regarding the relationship between natural gas and crude oil, 
Panagiotidis and Rutlledge (2006) have found evidence of a 
long-run equilibrium between UK gas prices and Brent oil time 
series, over the period 1996-2003. They have demonstrated 
robust cointegrating relationship between the assets, despite the 
opening of the UK-Europe gas Interconnector. Using an ECM, 
Bachmeier and Griffin (2006) evaluated the degree of market 
integration among crude oil, coal and natural gas market. Villar 
and Joutz (2006), using data from period 1989-2005, claimed to 
have captured a cointegration relationship between oil and natural 
gas, although there were periods of decoupling between the two 
markets. Brown and Yücel (2007) found that short run deviations 
from the estimated long run relationship could be explained by 
weather influence, natural gas storage, seasonality and production. 
The impact of seasonal fluctuations, weather shocks and storage 
fluctuations on the short run dynamic adjustment of prices has 
been investigated by Hartley et al. (2008).

In the work of Serletis and Herbert (1999), the price co-movement 
of natural gas (Henry Hub and Transco Zone 6), fuel oil (New York 
Harbor) and electricity prices in Pennsylvania Jersey and Maryland 
is explored. The authors find that natural gas and fuel oil prices 
are nonstationary, but the spot electricity price, is stationary. 
Therefore they built a bivariate cointegration only between the 
two gas markets prices and the fuel oil prices, because a bivariate 
cointegration for the electricity market, due to its stationarity, 
would be spurious.

A cointegration between electricity and natural gas futures daily 
prices was found by Emery and Liu (2002) and they noted that 
there are no differences in the sensitivity of electricity prices to 
changes in natural gas prices in the regions of California Oregon 
Border and Palo Verde.

Based on monthly spot prices on crude oil, natural gas and 
electricity and using cointegration analysis, Asche et al. (2006) 
noted differences in the relationship between the prices, depending 
on the time period. More specifically, they find the UK market as 
integrated in the period January 1995-June 1998 i.e., during the 
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deregulation period and before the physical Link of gas market 
to the European market. Due to this degree of market integration 
they considered that the three markets behave like a single (energy) 
commodity. They also state that after the Interconnector became 
fully operational (July 1998-December 2002), the decoupling of 
prices took place.

In this work we aim to identify the driving factors of electricity 
prices as well as relationships between the fuel inputs into the 
power generation mixture and the wholesale power price, in the 
case of the Greek Electricity Market. Ewing et al. (2002) have 
used daily historical data to evidence the evolution of oil and 
gas companies’ stock prices, via bivariate models. Significant 
diffusion between the volatility of gas and oil sector has been 
evidenced. Polemis et al. (2007) identified the connection 
between electricity prices in Greece and industrial energy demand, 
using cointegration methods. Henriques and Sadorsky (2008) 
investigated the relation between energy prices, stock prices and 
interest rates. Applying a VAR model, they observed that tech and 
oil stocks Granger-cause the prices of alternate energy companies. 
Mohammadi (2009) investigated the relation of electricity prices 
and the prices of assets that compose the generation mixture. 
Long-term dependence of electricity prices and coal prices has 
been observed, while natural gas and crude oil prices have no 
significant effect on the evolution of electricity prices. Choi and 
Hammoudeh (2010) analyzed the connection between stock 
market and commodities markets. Event-driven behavior has 
been analyzed and volatility of Brent and WTI crude have been 
proved more sensitive to geopolitical instabilities, while copper 
to financial crises. Standard and Poor’s 500 is sensitive on both 
occasions. He et al. (2014) have studied the macroeconomic 
influence of coal price adjustment on the electric power industry of 
China. As observed, increased electricity prices cause decreased 
total output and tend to make economic development factors less 
stationary. Causal relation between coal and electricity prices 
is identified, with decreasing intensity as coal prices increase. 
Hondroyiannis et al. (2002) and Payne (2010) developed a 
survey of the causal connection between economic growth and 
energy consumption, based on international results. The results 
yield a highly model-dependent outcome. Timeframe, variable 
selection, national framework and econometric parameters, all 
may be factors that shape the varying results. Bencivenga et al. 
(2010) examined the cointegrating relations between fossil fuels 
and electricity prices both in the EU and US. Their study aimed 
to capture variation in the dynamics of the markets caused by 
deregulation policies applied during the time period of 2001-2009. 
Their findings include major short-term effects on dynamics and 
possible significance of regulation to the long term equilibrium. 
Ferkingstand et al. (2011) identified nonstationarity in oil prices, 
coal prices and EUR/USD exchange rate. Causal dependence 
has been observed between gas and electricity prices. The work 
has contrasting results with the US study, showing only positive 
innovation shock responses (i.e., of natural gas to coal). Moutinho 
et al. (2011), using data between 2002 and 2005 of the Spanish 
Electricity Market, analyzed the relation of commodities prices 
and spot electricity market prices. Cointegration methods like 
VAR and vector error correction yield that electricity prices 
are mainly driven by the evolution of natural gas. Kirat and 

Ahamada (2011), examined the prices of electricity derivatives 
and alike instruments in Germany and France and observed 
constraints in contracts pricing, compelling producers to include 
carbon prices in their cost functions during the 2 years of the 
European Emissions Trading Scheme (EU ETS), underlining the 
significance of carbon prices in the development of electricity 
markets. Polemis and Dagoumas (2013), using vector error 
correction, analyzed the Greek Electricity Market and extracted 
causal relations between energy prices and economic growth 
indicators. The behavior of electricity prices after a shock has 
been observed using dynamic IR analysis. Environmental and 
energy policies are discussed to integrate Greece within the 
European framework. Brooks and West (2013), studying the 
energy production of the 27 countries of the EU (including the 
UK) for the time period of 2009-2012, examined the integration 
between coal, natural gas, EUA emissions and crude oil. Their 
DCC GARCH model observed no satisfactory levels of market 
integration during the volatile period of the study. Frydenberg 
et al. (2014), using daily historical data from 2006 to 2012, 
examine the relation of electricity futures prices and fuel sources. 
Their study in the UK, Germany and Nordic markets identifies 
cointegration between UK electricity, coal and gas and between 
electricity in Nordic countries and coal. Madaleno et al. (2014), 
using vector error correction, examined the relationship in the 
returns of carbon, electricity and fuel sources using data from 
the French and German markets. Special attention has been 
given on the impact of emissions trading, identifying that the 
significance of carbon depends on the fuel mix of the country 
studied. Madaleno et al. (2015), using data from 1996 to 2013, 
investigated the cointegration of electricity, gas, oil and coal, 
including panel data for both industrial and household sector. 
The findings of the VECM show that the electricity prices are 
cointegrated with the fuel prices. Industry sector was observed 
to be robust in terms of long-term equilibrium and household 
sector was robust both in short-term and long-term equilibrium. 
Mensah et al. (2014) examined the role of global crude oil on both 
gross domestic product and exchange rate of Ghana for the time 
period of 1980 to 2013. Their VECM developed by Johansen’s 
technique reveals positive causality between the GDP and the 
electricity prices and no relation with the exchange rate volatility.

3. BACKGROUND THEORY

3.1. A VAR Model
For the sake of completeness of this work we present the VAR 
model (VAR), although we only employ a VECM. This approach 
allows economic interpretation to shocks, which influence 
endogenous variables of interest. A typical VAR model, where 
the exogenous (or deterministic) component and the endogenous 
variables are modeled as follows:

p

t t i t i t t 1 t 1
i=1

2 t 2 p t p t

y = c+Bx A y =c+Bx +A y

A y A y

ε

ε

− −

− −

+ +

+ + + +

∑
 (1)

Where yt a k vector of endogenous variables, xt an m vector of 
exogenous variables, A’s are k×k coefficient matrices, B a k×m 
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matrix of coefficient for xt, c a k×1 intercept vector of constants, εt 
a vector of innovations that may be contemporaneously correlated 
but uncorrelated with their own lagged values and uncorrelated with 
all of the right-hand side variables. Furthermore, εt = (ε1,t,…,εk,t) 
is a k dimensional vector of reduced-form errors with the properties 

( ) ( )'
t t sE =0,E , = εε ε ε ∑  and ( )'

t sE , =0 for  s tε ε ≠  where Σε is an 

invertible k×k variance-covariance matrix. The number of lags p 
will be determined via Akaike Information Criterion (AIC) and 
SIC criteria as described below.

As an example let k = 2, m = 3, p = 2, so the bi-variable VAR(2) 
model with 3-exogenous variable is written as







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2,t 21 22 2
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32
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ε
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ε

 (2)

The above model is a typical tool of econometrics is VAR model 
(Hamilton, 1994) is and multivariate time series analysis. The 
endogenous variables yt and the exogenous variables xt are the 
observed random variables depending on (time) t=1, 2,… The 
main concept in VAR(p) model (p is number of lags) is that yt 
depend linearly on their k lagged values, as well as the current 
value of the xt.

Τhe same order of integration in all variables is assumed. In the 
case that all variables are stationary, i.e., I(0), we are dealing with 
the standard case of a VAR model, instead if all variables are non-
stationary, I(d) (d = order of differentiation), d >1, we consider 
two options. First, in case that the variables are not cointegrated, 
we must differentiate all variables d times so we can have a VAR. 
Second, if they are cointegrated, we can adopt a VECM in our 
analysis (Figure 3).

3.2. Granger Causality
One of the main uses of VAR models is forecasting. The structure of 
the VAR model provides information about a variables’ forecasting 
ability for other variables. The following intuitive notion of a 
variable’s forecasting ability is due to Granger (1969). If a variable, 
or group of variables y1 is found to be helpful for predicting another 
variable, or group of variables y2 then y1 is said to Granger-cause y2; 
otherwise it is said to fail to Granger-cause y2. Formally, y1 fails 
to Granger-cause y2 if for all s>0 the MSE of a forecast of y2,t+s 
based on (y2,t, y2,t−1,…) is the same as the MSE of a forecast of y2,t+s 
based on (y2,t, y2,t−1,…) and (y1,t, y1,t−1,…). Note that the notion of 
Granger causality only implies forecasting ability.

In a bivariate VAR(p) model for yt = (y1t, y2t)′, y2 fails to Granger-
cause y1 if all of the p VAR coefficient matrices A1,…Ap are lower 
triangular. That is, all of the coefficients on lagged values of y2 
are zero in the equation for y1. The p linear coefficient restrictions 
implied by Granger non-causality may be tested using the Wald 
statistic. Notice that if y2 fails to Granger-cause y1 and y1 fails to 
Granger-cause y2, then the VAR coefficient matrices A1,… Ap  are 
diagonal.

3.3. IR and Variance Decompositions (VD)
As in the univariate case, a VAR(p) process can be represented in 
the form of a vector moving average process.

yt = c+εt+Ψ1 εt−1+Ψ2 εt−2+ (3)

Where the k × k moving average matrices Ψs are determined 
recursively using (6.1.3).

The elements of coefficient matrices Ψs mean effects of εt−s 
shocks on yt. That is, the I,jth element, s

ijΨ , of the matrix Ψs is 
interpreted as the IR

i,t+s i,t s
ij

j,t j,t s

y y
       i,j=1,…,T

å å −

∂ ∂
= = Ψ

∂ ∂  (4)

Sets of coefficients ( ) s
ij ijs = , i,j=1,…,TΨ Ψ  are called the IR 

functions (IRF).

It is possible to decompose the h-step-ahead forecast error variance 
into the proportions due to each shock εj,t.

The forecast VD determines the proportion of the variation yjt due 
to the shock εjt versus shocks of other variables εit for i≠j.

3.4. VECM
Engle et al. (1987) formalized the theory of VECM. In the case 
where the vectors yt are I(1), they are differenced once in order 
to achieve stationarity. The K-dimensional VECM(p) (p order or 
number of lags) can be deduced from the VAR model in (1),

p

t t 1 i t i t t,
i=1

y =c+ y y Bx +− −∆ Π + Γ ∆ + ε∑  (5)

In which Δ is the lag operator (Δyt = yt-yt−1), and Γi is a kxk matrix 
which connects the changes in yt, for lagged i periods, to current 

Figure 3: A simple decision tree for vector autoregression analysis
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changes in yt. Long-run Information lost due to differencing 
(Juselius, 2006) is compensated through the matrix Π, called an 
error correction term. If α and β are both of dimensions k × r, (rank 
r is the number of cointegration relationships), then Π = αβ’. The 
cointegrated vectors i.e., the r linearly independent columns of β, 
are each reflecting one long-run relationship between the variables. 
Then β’yt−1 is stationary, i.e., I(0) process. The elements of matrix 
α are called adjustment coefficients, representing the speed of 
convergence to the long-run equilibrium.

In the case that r = 0, the matrix Π is absent, so we have a VAR 
in difference, not a VECM. In case of a full rank, r = n, we do not 
specify the model as a VECM because the stationary Δyt in (2) 
is equal to a non-stationary Πyt−1 (plus some lagged stationary 
variables and so on), which is inconsistent (Juselius, 2006).

Considering (1) and (2) we can write

p
'

i
i=1

Ð=  I A ,αβ
 

=− − 
 
∑  (6)

And,

p

i j
j=i+1

  AΓ =−∑  (7)

The k × k matrix Π, as we have mentioned in section 3, conveys 
information about the long-run relations among the endogenous 
factors. In particular, rank (Π) = r < κ suggests the existence of r 
cointegrating relations among the κ factors.

If we are primarily interested, for example, in the ECM for 
electricity prices in order to capture their dynamics relations with 
fuel costs, then the presence of a cointegrating relation among 
SMP and fuel prices forms the basis for the structure of VECM. 
Actually, the ECM model “reflects” the change in SMP as a linear 
function of its lagged changes, lagged changes in fuel prices and 
an error-correction term. Therefore the ECM provides information 
on the causality or interaction of SMP and fuel prices, on the short-
run causality via past changes in energy prices as well as long-run 
causality via adjustments in equilibrium error. In the produced 
model, significant coefficients indicate the portion of disequilibrium 
that is corrected in the following period by the error correction.

IRF and VD are powerful tools of VECM for the analysis of the 
impacts of shocks in fuel costs on the short-run dynamics of SMP. The 
IRF reveals the persistence of the shock and the way and speed with 
which the SMP returns to equilibrium (mean reverting behavior). 
The degree of contribution of each shock in fuel prices to the total 
variance of SMP forecasts is provided through VD. In our analysis 
here, we assume symmetric relations between SMP and fuel costs.

4. THE GREEK ELECTRICITY 
MARKET: A SHORT DESCRIPTION

Greece’s liberalized electricity market was established according 
to the European Directive 96/92/EC and consists of two separate 

markets/mechanisms: (1) The Wholesale Energy and Ancillary 
Services Market and (2) The Capacity Assurance Mechanism.

Greece has adopted in 2005 a pure mandatory pool for the 
wholesale electricity market. Its implementation was carried 
out in stages or transitional phases (2000-2005, 2005-2010 
and 2010–today). The revised market architecture, launched 
in September 2010, completed in 2011 its first full year of 
application, has determined the day-ahead (DA) SMP as the 
wholesale market index reminiscent to S&P or ASE index, 
as this price determines in great amounts the cash-flows of 
market’s players. This market design encapsulate fully the all 
the requirement of the grid and market operation code of 2005. 
The design makes a clear distinction between the DA market 
and Balancing mechanism. The evolution of Index HHI1 which 
measures the degree of openness of a market to competition has 
been reduced from the value of 10000 in years 2008 and 2009 to 
6844 in 2010 and 5764 in 2011, an improvement of the market 
evolving to a more competitive state. However, GEM is far from 
being considered a competitive market.

The wholesale electricity market is a day ahead mandatory pool 
which is subject to inter-zonal transmission constraints, unit 
technical constraints and reserve requirements. More specifically, 
based on forecasted demand, generators’ offers, suppliers’ bids, 
Power Stations’ availabilities, unpriced or must-run production 
(e.g. Hydro Power mandatory generation, cogeneration and RES 
outputs), schedules for interconnection as well as a number of 
Transmission System’s and Power Station’s technical constraints, 
an optimization process is followed in order to dispatch the Power 
Plant with the lower cost, both for energy and ancillary services. In 
this pool, Market “agents” participating in the Energy component 
of the DA market submit offers (bids) on a daily basis. The bids are 
in the form of a 10-step stepwise increasing (decreasing) function 
of pairs of prices (€/MWh) and quantities (MWh) for each of the 
24 h period of the next day. A single pair of price and quantity for 
each category of reserve energy (primary, secondary and tertiary) 
is also submitted by Generators. Deadline for offer submission is 
at 12.00 pm (“gate” closure time).

LAGIE (the Independent Market Operator) is responsible for 
the solution of the so-called DA (optimization) problem. This 
problem is formulated as a Security Constrained Unit Commitment 
problem, and its solution is considered to be the optimum state 
of the System at which the social welfare is maximized for all 
24 h of the next day simultaneously. This is possible through 
matching the energy to be absorbed with the energy injected into 
the System, i.e., matching Supply and Demand (according to 
each unit’s separate offers). In the above mentioned optimization 
problem besides the objective function there is also a number of 
constraints. These are the Transmission System Constraints the 
technical constraints of the Generating Units and the requirements 
for reserves of energy. The DA solution, therefore, determines the 
way of operation of each unit for each hour (dispatch period) of 

1 HHI stands for Herfindahl-Hishman Index. If HHI =10000 the market 
is a monopoly, if HHI >5000 the market is over-concentrated, H >1800 
concentrated, for 1000 < HHI <1800 efficiently competitive and HHI 
≤1000 competitive.
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the dispatch day as well as the clearing price of the DA market’s 
components (energy and reserves).

The ultimate result of the DA solution is the determination of the 
SMP, (which is actually the hourly clearing price). At this price load 
representatives buy the absorbed energy for their customers while 
Generators are paid for their injected energy to the System. The 
real-time dispatch (RTD) mechanism refers to adjusting the DA 
schedule taking into consideration data regarding availability and 
demand as well as security constraints. The dispatch scheduling is 
used in time period between DA scheduling and RTD where the 
producers have the right to change their declarations whenever 
a problem has been occurred regarding the availability of their 
units. Any deviations from the DA schedule are managed via the 
imbalances settlement (IS) operation of the market. During the IS 
stage an ex post imbalance price is produced after the dispatch day 
which is based on the actual demand, unit availability and RES 
production. The capacity assurance mechanism is a procedure 
where each load representative is assigned a capacity adequacy 
obligation and each producer issues capacity availability tickets 
for its capacity. Actually this mechanism is facing any adequacies 
in capacity and is in place for the partial recovery of capital costs. 
The most expensive unit dispatched determines the uniform pricing 
in the DA market. In case of congestion problems and as a motive 
for driving new capacity investment, zonal pricing is a solution, 
but at the moment this approach has not been activated. Physical 
delivery transactions are bounded within the pool although market 
agents may be entering into bilateral financial contracts that are 
not currently in existence. The offers of the Generators are capped 
by an upper price level of 150€/MWh.

Table 2 summarizes the time evolution of the net generation 
capacity for Greece for the period 2007-2014. We observe a 
gradual decrease in the share of lignite units in the total mixture 
and an opposite behavior in the share of natural gas units due 
to constantly increasing number of investments of independent 
power producers. More specifically, CCGT units during period 
2004-2011 have increased their share about 124%. The market 
was completely dominated by Public Power Corporation (PPC) 
until 2004. Table 1 and Figure 1 provide information on the 
market time evolution of generation mix in GEM for the period 
2007-2014 and 2004-2015 respectively. The gradual decline of 
electricity consumption during the financial crisis in Greece, from 
2009 onwards has as a result the significantly depressed electricity 
production from conventional technologies. As it is shown lignite 
generation remains on average constant to 30 TWh for the period 
2004-2009 and then declines gradually to 19.5 TWh in 2015. In 
2004 the lignite generation decreased by 2.2% compared to 2013, 
falling to 22.7 TWh. Natural gas generation shows a constant 
increase from 2004 to 2008, a slight decrease in years 2009-2010, 
a significant increase in 2011-2013 and then a gradual decline up 
to 2015. The generation from gas-fired plants has shown a sharp 
full of 43% in 2014 compared to 2013.

Figure 4 provides information on the main structural components 
of the Greek wholesale Electricity Market (taken from RAE’s 2010 
National Report to the European Commission) (RAE, 2009; 2010). Ta
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Figure 2 represents the daily generation mix for December 
2012 and the daily evolution of SMP for the same period. It 
is observed that an increased generation by natural gas (and a 
decreased generation by lignite) stations causes a significant 
increase on the electricity prices. On the contrary, a decreased 
generation by natural gas (and an increased generation by 
lignite or hydraulic systems), causes the SMP to drop. The same 
behavior is observed for all data, in and out of the examined 
period of 2004-2014. In the following sections we will see this 
impact of fundamentals being captured by our VEC model and 
other similar tools.

4.1. Natural Gas and Lignite in GEM
In this study we used for natural gas, daily prices from the national 
balancing point (NBP) in UK for a variety of reasons which are 
explained later (see section 4.3). Although that is not the case, 
for the sake of completeness in our work we provide a short 
description of the Natural Gas “Market” in Greece. We should 
emphasize also that the average monthly dynamics of Natural Gas 
from NBP strongly resembles the dynamics of the Greek Market 
in the period of our study (highly correlated).

In Greece there is no indigenous gas production. DEPA is the 
incumbent and vertically-integrated gas company in Greece owns 
and operates the National Natural Gas System (NNGS) in Greece. 
It owns also the 100% of its subsidiary DESFA S.A, the TSO of 
the NNGS. The share of gas imports in the period 2010-2012 
corresponded to about 90% of the total annual imports. The gas 
market is still organised on the basis of bilateral contracts between 
suppliers and eligible customers. According to the Greek gas 
law, eligible natural gas customers were customers with annual 
natural gas consumption, for two consecutive years, of more than 
100 GWh GCV of natural gas. In 2014, law no.4254/2014 has 
redefined the term Eligible Natural Gas Customers.

All gas-fuelled power plants are considered eligible natural 
gas customers. No organised wholesale market exists yet. The 
following “market” mechanisms determine the kind of transactions 
that exist today: (1) wholesale trading of LNG quantities in-
tank, (2) resale of gas between eligible customers and (3) the gas 
release schedules run by DEPA on a quarterly basis, originated 
in December 2012.

As set in the relevant Greek legislation, DEPA prepares and 
submits every year to RAE for approval an annual balancing plan 
which includes TSO’s estimates regarding balancing gas supply 
sources for the next year. For example, for year 2014 balancing 
plan, the balancing gas needs were estimated to amount to 3.8% 
of the total gas consumption, however the year-end data indicated 
an amount 6.9%, a large deviation due to considerable imbalances 
occurred at the exit points of the NNGS where gas-fuelled power 
plants are connected. Every year RAE approves the balancing 
cost allocation scheme as well as the associated shippers’ charges 
which includes a fixed charge covering the fixed costs of the 
TSO in providing balancing services and an energy charge which 
corresponds to the cost of balancing gas procured by the TSO, 
in accordance with the relevant balancing gas supply contracts, 
which form the basis of the daily balancing gas price (DBGP), 
the cash-out price. The methodology of estimating all balancing 
charges and DBGP (or HTAE in Greek) is available on DESFA’s 
website (http://www.desfa.gr/default.asp?pid=318&1a=2).

DESFA, in order to allow current and potential market participants 
to gain a better understanding of the price conditions prevailing 
in the Greek market, publishes on tis internet site, data on daily 
prices of balancing gas (HTAE).

According to the provisions of the Ministerial Decision No 
Δ1/Γ/400 (Government Gazette Issue Β’ 33/19.1.2007), entitled 
«Determination of the procedure applied to collect and process 
the data required to calculate the weighted average import price 
(WAIP) of natural gas,” the companies importing natural gas in the 
NNGS are required to submit to RAE, every three months, data 
about the quantities and prices of imported natural gas.

RAE, within the framework of its competence regarding 
monitoring of the energy market, following the provisions of par. 1 
of article 5 in Law 2773/1999, is publicizing data on the calculated 
WAIP of natural gas in the NNGS of Greece, on a monthly basis. 
Publicized data on WAIP prices are the result of calculations 
performed on the data provided by importers according to the 
provisions of the aforementioned Ministerial Decision.

The publication of data on WAIP, in combination with the 
publication of data on daily prices of balancing gas (HTAE) 
in DESFA’s internet site, allows current and future participants 
in the natural gas market to gain a better understanding of the 
price conditions prevailing in the Greek market, and therefore 
to exploit business opportunities and enhance competition to the 
benefit of consumers of natural gas. Furthermore, the publication 
of wholesale prices constitutes a necessary prerequisite for the 
organization, in a later stage, of a wholesale gas market, where 
the prices will be determined by the supply and demand in real 
time terms. Figure 5 presents the monthly WAIP against the daily 
price of balancing gas (DBGP) for the same month, as announced 
on the internet site of DESFA (March 2008-March 2015), versus 
the average monthly SMP in Greece.

The installed capacity of electricity generation plants in Greece 
currently stands as follows (as of August 2015): 3,912 MW 
lignite-fired plants, 4,906 MW natural gas-fired plants, 1,684 MW 

Figure 4: System marginal price fluctuation versus energy mix for the 
January of 2012 (Data source ADMIE S.A)
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oil-fired plants on the islands, 3,018 MW hydro plants, 1,767 MW 
wind farms in the interconnected grid and 317 MW on the islands, 
2,443 MW solar PV parks in the interconnected grid and 136 MW 
on the islands, 224 MW small hydro, 49 MW biogas - biomass.

In 2014, the Greek PPC commissioned a study2 to Booz and Co 
Consultants in order to compare the costs of lignite-fired power 
generation in the lignite-mining European countries (Germany, 
Poland, Greece, Turkey, Czech Republic, Romania, Bulgaria, 
Serbia) in the year 2012, in view of identifying the key cost 
parameters and the differences among the various lignite systems 
in Europe. According to the findings, the cost of extraction in 
Greece (at € 2.12 per ton) is the lowest, comparable to that 
in Germany. However, if the extremely low calorific value 
of Greek lignite is taken into consideration (as well as other 
variable production cost parameters), then lignite-fired power 
generation in Greece proves to be the costliest in Europe, at 
59.9 €/MWh, vs. 53.6 in Germany, 39.0 in the Czech Republic, 
38.6 in Poland, 54.2 in Romania, 31.6 in Bulgaria, 40.3 in Serbia, 
and 52.7 in Turkey.

4.2. Data Sets, Processing and Tests (Basic Strategy to 
Identify Model)
As we have already mentioned, the purpose of this paper is to 
investigate the short and long run dynamics between the SMP 
in the Greek Energy Market (GEM) and the fossil fuel prices, 
along with the cost of carbon allowances. The SMP data (average 
of 24 hourly data) has been provided from the official site of 
the Greek IPTO, ADMIE S.A (www.admie.gr). The dataset 
covers the period from 2007 to 2014, i.e., containing 2160 data 
observations corresponding to 7 years. We are focusing our 
study in this period due to unavailability of data for the rest of 
the variables (namely carbon allowances and lignite fuel cost). 
The market was less mature before 2005. We note that the SMP 
data are ex-ante. Figure 6 shows the dynamics of evolution of 
SMP. Regular (weekly, quarterly) patterns can be seen, as well 
as some short-lived spikes and volatility clusters (although 
not easily distinguished). SMP exhibits also, besides volatility 
clustering, the typical features of mean reversion and spikes, 
an tendency of the data to fluctuate around a long-term stable 

2 https://www.dei.gr/Documents2/INVESTORS/MELETH%20BOOZ/
Understanding%20Lignite%20Generation%2https://www.dei.gr/
Documents2/INVESTORS/MELETH%20BOOZ/Understanding%20
Lignite%20Generation%20Costs%20in%20Europe.pdf0Costs%20in%20
Europe.pdf

state or equilibrium, as well as extremely high values of short 
duration (spikes). Figure 7 depicts the log prices of all the time 
series considered in this work.

For the purposes of this study we consider 3 assets that are the 
most liquid energy commodities, namely Brent Oil, Natural 
Gas and European Carbon Allowances (eua). Also for the 
same reason we will refer to all these as “fuel prices.” Daily 
spot price of Brent Oil in $/bbl was considered. For natural 
gas we selected 1 month ahead future prices traded at the 
NBP in UK, expressed in Euro/MWh, obtained from the ICE. 
Since contracts at NBP Hub are in pence sterling per therm we 
used the appropriate conversion which is 1 therm per 0.0293 
MWh ICIS3, and the conversion of pence sterling to Euro is 
according to the daily exchange rate published by the European 
Central Bank4. Since the late 1990s, UK NBP Hub gas market 
is Europe’s longest established wholesale (spot-traded) market 
in operation. This wholesale gas market is the most liquid one 
in Europe nowadays, alongside a number of newly established 
Continental Europe hubs (e.g. Zeebrugge in Belgium and TTF 
in Netherlands) and gas anywhere in UK within the Natural 
Gas National Transmission System counts as NBP gas. This 
Hub brings together buyers and sellers so the trading is greatly 
simplified. There is a variety of products: Within-day (for same 
day delivery), DA (for next day delivery), months, quarters, 
summers (April to September) and winters (October to March), 
as well as annual contracts.

In order to test whether the price of NBP consists an adequate 
“representation” of the natural gas in Greece, daily prices were 
converted to monthly and compared to with the prices provided by 
DESFA (Figure 8). The prices have similar evolution and follow 
the same trends over time. Moreover the correlation coefficient 
between them was found ρ = 0.8485, suggesting that the prices 
strongly co-move, thus no significant loss of information should 
occur when using prices from NBP to calculate long-term relations. 
One important note is the two dates pointed out in Figure 8. First, 
01.09.2011 is the reference (activation) day for a controversial 
levy tax on natural gas and the second, 18.12.2012, is the recall 
day of the same tax. Overall the graph suggests that this tax 
increased the spread between NBP prices and prices in Greece, 
and the importance of this date would be further analyzed in next 
sections, as well as tested for structural breaks after modeling a 
VECM (Papaioannou et al., 2017).

Daily settlement prices of EUA futures contracts (€/ton) traded 
on the ICE ECX are used to form a continuous price time series 
that combines a number of contracts expiring in Phase II and III 
(2008-2012 and 2013-2020), following the approach of Koch 
(2014). We mention here that trading of EUA futures contracts 
started not until April 22, 2005. The price of the 2008 contract 
constitutes the continuous carbon price time series during Phase I. 
This series changes to the December 2009 contract in Phase II, up 
to the last trading day, on which day the series changes again into 
the next yearly contract. According to Koch (2014) this method 

3  http://www.icis.com/energy/gas/europe/spot-market-methodology/.
4  http://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-

gbp.en.html.

Figure 5: Monthly weighted average import price of natural gas in 
Greece
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of constructing the continuous EUA series is unlikely to introduce 
a bias because the used futures contracts are not redeemable in 
Phase I. This choice in forming the EUA series is further enhanced 
by the fact that EUA are required only once a year, for the reason 
of compliance, so holding spot EUAs does not offer any advantage 
in comparison with holding a corresponding futures position 
(Daskalakis et al., 2009). Also, Koch (2014) concludes that the 
EUA futures prices for Phase II can be considered as the reliable 
“real” price signal for investors. We have used EUA data, Phase 

II, obtained from ICE ECX market because this is the leading 
exchange (Mizrach and Otsubo, 2011).

We have to mention here that for the purposes of this paper, 
we consider EUA into the group of “fuel prices” or “Energy 
commodity” assets, although there are arguments about this like 
the work of Kanamura (2010) who argue that EUA is not a real 
commodity asset as those considered in the financial theory.

Figure 7: Log levels of prices of system marginal price, input fuels and EUA

Figure 6: (a and b) System marginal price prices in Euro/MWh (up) and SMP log returns (down)

a b



Papaioannou, et al.: Using a Rolling Vector Error Correction Model to Model Static and Dynamic Causal Relations between Electricity Spot Price and Related 
Fundamental Factors: The case of Greek Electricity Market

International Journal of Energy Economics and Policy | Vol 8 • Issue 1 • 201848

Finally indigenous lignite price, which is fuel cost for a Greek 
typical lignite-fired power plant, was considered. As we can be 
seen in Figure 5 lignite, which is in abundance in Greece, consists 
a large portion of the production allocation portfolio.

The logarithmic prices of all the variables can be seen in Figure 7. 
All the graphs (except the indigenous lignite) present a significant 
drop in late 2008, close to the collapse of the Lehman brothers. 
This is can be attributed to the financialization of the energy 
commodities (Koch, 2014).

A summarized description of the data used can be seen in 
Table 3.

4.3. Testing for Stationarity
In order to construct a VEC model we need to test for non-
stationarity in the time series and confirm that they are integrated 
of order 1. Economic and financial time series, due to the fact 
that they depend on exogenous factors, exhibit a non-stationary 
behavior (Brock and de Lima, 1995; Pagan, 1987). However, it has 
been found that electricity market data are more stationary than 
all financial series, reported so far in empirical analyses (Strozzi 
et al., 2002; Bunn, 2004; Weron, 2006). Augmented Dickey Fuller 
(ADF) test with intercept has been performed on (logarithmic) 
levels, for testing the null hypothesis that the variables have unit 
roots i.e., are nonstationary. Table 4 lists the results.

The P-value rejects the null hypothesis of unit root for the SMP, 
therefore we can conclude that the series is stationary around 
a non-zero mean (since we tested including an intercept). This 
comes as contrast to other works (Theodorou and Karyambas, 
2008; Petrella and Sapio, 2012). Papaioannou et al. (1995), have 
applied a nonlinear tool for stationarity detection in financial and 
electricity markets. It should be mentioned that the ADF test is very 
sensitive to the model selected. Testing for unit roots without trend 
or intercept failed to reject the null hypothesis at all significance 
levels, suggesting that the SMP is non-stationary. The results for 
the other time series cannot reject the unit root test in levels, and all 
series are stationary in first differences. We can confirm that Brent, 
ngasUK, eua and lignite are all I(1) and SMP is either I(0) or I(1). 

Since in this paper our purpose is to model a VEC, SMP does not 
need explicitly to be non-stationary since the other variables are 
I(1), but we proceed with caution to the ordering of the variables. 
As suggested in the work of Lutkenpohl and Kratzig (2004) any 
stationary variables should be placed in the upper r-dimensional 
subvector of yt where r=rank of cointegration, which must be at 
least as great as the number of I(0) variables in the system.

Table 5 shows the critical values for the various models and the 
various confidence intervals of the ADF test.

4.4. Static and Rolling Johansen Cointegration Test
Johansen cointegration test is applied to estimate the number 
parameters of the cointegrated variables. Firstly, the test is 
conducted multiple times, for increasing number of model 
variables and each time the statistical likelihood is calculated 
via numerous methods (AIC, Schwartz, log likelihood). Through 
this process, we identify number of cointegrated variables. Then, 
the test is applied once again, this time for the optimal number 
of cointegrated variables and the parameters of the coefficient 
matrices α and β are estimated with the least squares algorithm. 
Multiplying the α and β matrices, we can calculate the Π matrix 
of reduced rank. With matrixes α and β respresenting:

a∈Rk×r, β∈Rk×r, Π=αβΤ∈Rk×k (8)

Where k is the original dimension of the system and r is the number 
of cointegrated equations. Matrix α is the residual matrix and 
matrix β is the matrix of the r largest eigenvectors.

Before applying the Johansen cointegration test the optimal of 
the autoregressive order must be selected. The optimal lag is 
selected by finding the optimal lag for an unrestricted VAR fitted 
in the data, as suggested by the AIC, Schwarz Criterion (SC) and 
Hannan-Quinn Criterion (HQ). SC and HQ seem to fit better in 
systems with more than 2 variables, due to their ability to estimate 
the order in large samples and that the consistency property applies 
for integrated processes also (Paulsen, 1984; Tsay, 1984).

AIC suggests order of 4 lags while, SC and HQ suggest 2 lags 
(Table 6). We proceed by testing for cointegration for both lag 
orders by applying the Johansen test. It should be noted that 
since we estimated the optimal Lag of order p, for unrestricted 
VAR in levels, we will use Lag of order p-1 when estimating 
the VECM since it is in differences. The tests for both lags 
result in one cointegration relation in the system. The test assess 
the null hypothesis of cointegration at every rank r, with r = 0 
meaning that there is no cointegration and r = k, where k is the 
number of endogenous variables, suggesting that every linear 
combination of the variables is stationary, thus the system is 
stationary at levels (Lutkenpohl and Kratzig, 2004). According 
to Table 7 there is evidence of cointegration in SMP at 1%-level. 
We remind here that a probability value above 0.05 indicate a 
failure to reject the null of r number of significant cointegration 
vectors. In our case, since P = 0.000 we reject the null for non 
and accept H1: r≥1, i.e., that there exist at least one significant 
vector cointegrated with SMP.

Figure 8: Monthly prices of national balancing point UK and natural 
gas in Greece
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4.5. Rolling Johansen Test
The Johansen test as presented previously performs static 
analysis in the dataset. In order to assess the evolution over 
time in the level of cointegration between the variables we elect 
to perform the Johansen test with a rolling window. Fratzscher 
(2001) showed that static analysis even in many subperiods 
is still problematic in representing correct the evolution of 
the integration, thus we select a rolling window analysis. 
However, before proceeding we should emphasize the possible 
problems related with the rolling window analysis. One potential 
problem is the size of the rolling window, which we set at 1000 
observations following the work of Elving (2011). Lucey et al. 
(2008) used a rolling window of 500 observations and concluded 
that the sample was small regarding the complexity of the system. 
Another potential problem is the selection of the lag length for 
each event window. While we could test for the optimal lag length 
at each window before performing Johansen test, we don’t expect 
significant differences and since our goal is to investigate the 
various trends in the evolution of integration and not the precise 
number of cointegrating relations in each window, we selected 
a constant lag as suggested by Table 6.

Our methodology is as follows: Johansen cointegration test is 
performed in the first 1000 observations (window size), then 
the window moves one observation ahead while dropping the 
oldest observation, thus maintaining a constant number of 1000 
observations. Johansen test is then performed in the new subset 
and the process is repeated until the end of the sample and the 

results are analyzed by visual inspection. The trace statistics for 
every null hypothesis are scaled, i.e., divided by the 95% critical 
value of the test, and plotted in time. When the scaled statistic is 
≥1 indicates rejection of the null hypothesis, while when ≤1 the test 
fails to reject the null hypothesis. The nature of the test suggests 
that every subsequent series to be lower than the previous, thus 
the first test, which tests the null H0: r = 0, i.e., the number of 
cointegrating vectors is zero, will be at the top, followed by the 
statistic of the H0: r≤1 etc. The logic behind this is the following: If 
the test fails to reject cointegration of r = 0 (no cointegration), it is 
highly unlikely that any of the subsequent tests will fail reject their 
respective null hypothesis. For simplicity purposes and in order 
to present the results more clearly, Figure 9 shows the evolution 
of the trace statistic produced from the Johansen test for the null 
H0: r = 0, i.e., no cointegration.

Since the trace statistic is constantly over 1 the null of no 
cointegration is rejected at all times, meaning that smp, fuel prices 
and carbon allowances always had some level of integration. 
This level of integration is volatile before 2012 and becomes 
less volatile after. If we interpret the level of the trace statistic 
above 1 as a measure for the integration between the variables, 
our findings suggest that the level of integration peaked in the 
middle of 2011, followed by downward trend in the latter half of 
2011 afterwards, and remained steady in the period after 2012. 
This behavior and the overall volatility of the integration level 
during 2011 may be attributed to the regulatory market reform, 
which was a controversial decision by the ministry of finance 
to impose a new tax levy on natural gas from 01.09.2011 and 
onwards. The asymmetric impact on gas fired production vs lignite 
production, combined with shrinkage in hydro production resulted 
in a substantial increase in the electricity spot price (RAE, 2012; 
2013). The tax ceased after 18.12.2012, but it may be responsible 
for the downward trend on the integration between smp and fuel 
prices in the end of 2011.

5. MODEL ESTIMATION

VECM (VEC or VECM) are used to perform VAR on 
nonstationary data, where long-run relationships between the 
variables are present. The VEC has the cointegration relations 
built into the specification so that it restricts the long-run behavior 
of the endogenous variables to converge to their cointegrating 
relationships while allowing for short-run adjustment dynamics. 
The cointegration term is known as the error correction term since 
the deviation from long-run equilibrium is corrected gradually 
through a series of partial short-run adjustments. After determining 
the number of cointegration equations from the static Johansen 

Table 3: List of data set and name of variables used in modeling
Name of data TS Description Length of 

time series
Units of 
measure

Source Period covered

smp ex-ante or 
smp

Ex-ante SMP (GEM pool) 2160 €/MWh IPTO data base 2007-2014

brent Brent crude OIL price 2160 $/bbl ICE (Inter. exchange, Bloomberg 2004-2014) 2007-2014
lignprice Lignite unit variable cost 2160 €/MWh IPTO data base 2007-2014
natgas_UK Nat gas price NBP 2676 €/MWh ICE 2007-2014
eua_co2 CO2 emissions tax 2160 €/tCO2 EEX 2007-2014

Table 4: ADF test for stationarity
Variables Log levels First log difference

Intercept P value Intercept P value
smp −4.83 (7)*** 0.00 −25.54 (6)*** 0.00
brent −1.43 (0) 0.56 −47.17 (0)*** 0.00
natgasUK −1.67 (0) 0.44 −46.42 (0)*** 0.00
eua_CO2 −1.59 (2) 0.48 −35.06 (1)*** 0.00
lignprice −1.66 (2) 0.44 −41.60 (1)*** 0.00
*Numbers in parenthesis give the optimal lag length, based on SIC, max number of 
lags=25. ***Denotes rejection of the null hypothesis in the 1% confidence interval, 
ADF: Augmented Dickey Fuller

Table 5: Asymptotic critical values for the unit root 
test (ADF test)
Critical values 1% 5% 10%
None −2.560 −1.940 −1.616
Constant −3.431 −2.862 −2.567
Constant+trend −3.960 −3.410 −3.127
ADF: Augmented Dickey Fuller



Papaioannou, et al.: Using a Rolling Vector Error Correction Model to Model Static and Dynamic Causal Relations between Electricity Spot Price and Related 
Fundamental Factors: The case of Greek Electricity Market

International Journal of Energy Economics and Policy | Vol 8 • Issue 1 • 201850

test in the whole sample, we construct a VECM (1), based on the 
minimum SC. Since our data has clearly non-zero mean value 
as can been seen in Figure 7, we build a VEC with intercept 
(constant). The trace test and the maximum eigenvalue test suggest 
1 cointegrated relation. The VECM in this study is as follows (due 
to space limitations we only present the equation for the smp):

Δsmp=a1 (c+smpt−1-β2brentt−1-β3euat−1-β4ngasUKt−1-β5lignitet−1) 
(9)+Φ1,1Δsmpt−1+Φ1,2Δbrentt−1+Φ1,3Δeuat−1+Φ1,4ΔngasUKt−1 
+Φ1,5Δlignitet−1+ε1,t

Where Δ is the difference operator (Δyt = yt-yt−1), (c+smpt−1-
β2brentt−1-β3euat−1)-β4ngasUKt−1-β5lignitet−1) is the error correction 
term driving the long run dynamics and Φi,j the coefficients on 
the lagged differences, which drive the short run dynamics, a is 
a (5 × 1) matrix with elements the speeds of adjustment and β a 
(5 × 1) matrix of cointegrating vectors, with β1 = 1. Finally, εt is 
a (5 × 1) vector of errors. The estimated parameters can be seen 
in Tables A1 and A2 in the appendix.

6. RESULTS ESTIMATION

6.1. Short Run Dynamics
The parameters estimated from the VECM (1) fitted to the data are 
shown in Table A2 in appendix A. By studying the t-parameters 
of the coefficients a lot of parameters have low absolute values, 
suggesting that they can be omitted from our model. In order to 
better understand the short run linkages between electricity and 
fuels prices returns, we apply pairwise Granger causality test. As 
seen in Table 8 the test fails to reject the null hypothesis of the 
coefficients being zero in all confidence levels when the SMP is the 
dependent variable, suggesting no short run relationship between 
electricity prices returns in Greece and fuel prices returns. Furio 
and Chulia (2012) found similar results in the short run dynamics 
between electricity and fossil fuel prices in Spain. The rest of 
the results suggest two one-directional relations “flowing” from 
ngasUK to Brent and domestic lignite respectively, and one from 
Brent oil to eua.

6.2. Long Run Dynamics
As earlier stated, a cointegration relation suggests a long-run 
equilibrium between non-stationary variables. The estimated 
cointegration relation for our model can be seen in Table A1 in the 
appendix. By applying a Wald test to the estimated coefficients we 
are able to test their significance. Results are shown in Table 9. The 
coefficient of the equation a1 as well as the cointegrating vectors 
for the eua and the natgasUK, β3 and β4 respectively, reject the null 
hypothesis of no significance at 1% significance level. Regarding 
the Brent oil and lignite their corresponding cointegrating vectors 
fail to reject the null hypothesis at any level, suggesting that there 
is no significant long run relationship between these two fuel prices 
and the electricity prices. Overall our findings suggest that the 
smp tends to adjust to past disequilibria by ‘following’ the trend 
values of eua and natgasUK.

6.3. Chow Breakpoint Test
Rolling Johansen test in section 4.2 showed that the level of 
integration presented a sharp decrease in the second half of 
2011. In order to better test our assumption that the regulatory 
reform, which imposed a levy tax on natural gas, we apply Chow 
breakpoint test. The test strongly rejected the null hypothesis of no 
breaks at the specific date, with a p-value of 0.000, confirming our 
intuition that the levy tax on the natural gas did indeed ‘disturbed’ 
the long-run equilibrium between smp and fuel prices.

Table 6: Lag length criteria
Lag LogL AIC SC HQ
0 −7.372.598 0.689832 0.703016 0.694655
1 21721.73 −2.015.960 −2.008.050 −2.013.067
2 21852.25 −2.025.767 −20.11265* −20.20462*
3 21898.17 −2.027.711 −2.006.618 −2.019.995
4 21929.33 −20.28283* −2.000.598 −2.018.156
5 21950.99 −2.027.973 −1.993.696 −2.015.434
6 21962.44 −2.026.714 −1.985.846 −2.011.764
7 21988.82 −2.026.842 −1.979.382 −2.009.480
8 22016.78 −2.027.117 −1.973.065 −2.007.344

Figure 9: Rolling Johansen test

Table 7: Johansen cointegration test
Unrestricted cointegration rank test (trace)
Hypothesized Eigenvalue Trace 0.05 P**
Number of 
CE (s)

Statistic Critical 
value

None * 0.048084 153.8959 69.81889 0.0000
At most 1 0.011576 47.60146 47.85613 0.0528
At most 2 0.005781 22.48672 29.79707 0.2722
At most 3 0.004280 9.981041 15.49471 0.2822
At most 4 0.000338 0.729686 3.841466 0.3930
Trace test indicates 1 cointegrating eqn (s) at the 0.05 level, *denotes rejection of the 
hypothesis at the 0.05 level, **MacKinnon-Haug-Michelis (1999) P values

Unrestricted cointegration rank test (maximum eigenvalue)
Hypothesized Eigenvalue Max-Eigen 0.05 P**
Number of 
CE (s)

Statistic Critical 
value

None * 0.048084 106.2945 33.87687 0.0000
At most 1 0.011576 25.11475 27.58434 0.1003
At most 2 0.005781 12.50568 21.13162 0.4986
At most 3 0.004280 9.251356 14.26460 0.2658
At most 4 0.000338 0.729686 3.841466 0.3930
Max-eigenvalue test indicates 1 cointegrating eqn (s) at the 0.05 level, *denotes rejection 
of the hypothesis at the 0.05 level, **MacKinnon-Haug-Michelis (1999) P values
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6.4. IR and VD
The above tests aid in identifying qualitatively the Granger 
Causality relations between the model parameters. However, the 
extent to which an endogenous variable contributes to the evolution 
of the asset of interest cannot be determined. Therefore we conduct 
the analysis of the dynamic interactions among the variables in 
the post-sample period through IRF and VD.

Forecast error IR of one standard deviation are used in this study. 
While this test doesn’t take in consideration the correlation 
between the residuals and must be used cautionary, the residuals 
from the estimated VECM(1) present unsignificant correlations 
(with the exception of eua-Brent), as seen in Table 10 so we 
proceed by analyzing the IR.

The Figure 10 show permanent effects on smp of the various 
shocks. Most significant results are the substantial positive effect 
of the ngasUK and eua shocks to smp price, which converge to a 
constant after about 40 days.

VD is applied to the group of endogenous variables of the 
model in order to identify the contribution of each variable to 
the development of the variance of electricity prices. While IR 
explores the dynamics of the model, showing how typical shocks 
affect the variable through time and examining its evolution, VD 
highlights the shocks that are most significant in this evolution. 

In this case we examine the endogenous variables of each group 
and seek the major drivers of their volatility.

As Table 11 ngasUK and, in a lesser extent, eua, explain a significant 
amount of the variance of the smp in a 90-day period, while Brent 
oil and lignite have no significant contribution in the variance of 
electricity prices. These findings confirm the long-run relations from 
the estimated VECM and underline the importance of ngasUK and 
eua prices in the formation of electricity prices in Greece.

7. CONCLUSIONS

In this study we analyzed the long-run and short-run relationships 
between electricity prices in Greece and price levels of various 
fuels, namely Brent oil, natural gas, carbon allowances, as well as 
the fuel cost price of a Greek typical lignite-fired plant. Using the 
method established by Johansen one cointegrating relation was 
found between the endogenous variables. Due to the static nature 
of the Johansen test, we applied a rolling window methodology in 
order to assess the evolution over time in the level of integration. 
Our findings suggest higher levels of integration in 2011, followed 
by lower and less volatile integration afterwards.

After constructing the corresponding VECM we investigated 
via Granger Causality the short-run dynamics and found that 
the electricity prices in Greece present no significant short-run 
relationship, suggesting a low degree of integration between the 
GEM and the energy commodities markets Papaioannou et al. (2017). 
On the other hand a significant long-run relationship was found 
suggesting that the electricity prices tend to adjust to past disequilibria 
of the eua and the natural gas prices, while long-run relationships 
with Brent oil and lignite were found statistically insignificant.

Furthermore we are interested in observing the response of an 
endogenous variable to an excitation of another. This response, 
in a practical application like our case, will be a strong indicator 
of the expected behavior of the said variable in a scenario of an 
unexpected shock to another variable by one standard deviation, 
namely the response of smp to shock in fuel prices. This allows 
the researcher to perform simulations on various real-life scenarios 
and observe the dynamics and weaknesses in order to design the 
necessary adjustments or regulations prior to a crisis. For this 
purpose we performed IR and VD analysis. By using IR of one 
standard deviation we found that shocks in the fuel prices have 
a lasting effect on the electricity prices, with the ones of natural 
gas and eua being the most significant. VD also showed that a 
significant portion of the electricity price variance is explained by 
the natural gas variance, with eua accounting for smaller portion.

Overall our results suggested that the Greek electricity market 
is not highly integrated with the fuel markets. Brent oil has 
insignificant relations with the electricity prices, which was 
expected since it consists an extremely small portion of the 

Table 8: Granger causality results
Dependent variable

Δsmp Δbrent Δeua ΔngasUK Δlignite
Δsmpt−1 - 0.2741 0.5454 0.6232 0.2793
Δbrentt−1 0.8684 - 0.0171** 0.1085 0.3196
Δeuat−1 0.7196 0.1816 - 0.3177 0.8527
ΔngasUKt−1 0.3703 0.0084*** 0.5370 - 0.0757*
Δlignitet−1 0.6106 0.6984 0.4545 0.3947 -
***, **, *Denotes rejection of the null hypothesis on the 1%, 5% and 10% confidence 
interval respectively

Table 9: Wald test for the error correction term
Δsmp

Coefficient P value
a1 −0.140071 0.0000***
β2 0.037607 0.6876
β3 −0.316053 0.0002***
β4 −0.541192 0.0000***
β5 0.096060 0.2905

Table 10: Residuals correlation matrix
log (smp) log (brent) log (eua) log (ngasUK)

log (smp) 1.00 −0.01 0.02 0.01
log (brent) −0.01 1.00 0.21 0.08
log (eua) 0.02 0.21 1.00 0.11
log (ngasUK) 0.01 0.08 0.11 1.00

Table 11: Variance decomposition
Period S.E. LOG (SMP) LOG (BRENT) LOG (EUA) LOG (NGASUK) ) LOG (LIGNITE)
90 0.309072 76.27105 0.190668 9.257142 14.13187 0.149265
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generation mix and very rarely sets the price via the merit order 
principle. Lignite also present nonsignificant short and long run 
relationships, even though it consists a much larger portion of the 
mix and sets frequently the price via the merit order. This can be 
attributed to the fact that lignite is in abundance in Greece and 
while its price increases in Greece, the fuel cost of the lignite-fired 
plants remain significantly lower than the one of the gas-fired ones.

EUA and natural gas on the other hand, present a significant 
long-run relationship with the electricity prices suggesting that 
electricity prices in Greece tend to adjust to the trends of these two 
assets, while the day to day dynamics are insignificant. IR analysis 
showed that a shock to eua or natural gas has a permanent positive 
effect on the electricity prices which converges to a constant about 
30 days after its occurrence.

Overall our results suggest a small degree of integration 
between the Greek electricity market and the most liquid energy 
commodities traded in Europe, possibly due to its deregulation 
being still an ongoing process.

REFERENCES

Asche, F., Osmundsen, P., Sandsmark, M. (2006), The UK market for 
natural gas, oil and electricity: Are the prices decoupled? The Energy 

Journal, 27(2), 27-40.
Bachmeier, L.J., Griffin, J.M. (2006), Testing for market integration: 

Crude oil, coal, and natural gas. The Energy Journal, 27(2), 55-72.
Bencivenga, C., Sargenti, G., D’Ecclesia, R.L. (2010), Energy markets: 

Crucial relationship between prices. Mathematical and Statistical 
Methods for Actuarial Sciences and Finance. New York: Springer 
Link. pp23-32.

Brock, A.W., de Lima, P.J.F. (1995), In: Naddal, G., Rao, C. editors. 
Nonlinear Time Series. Complexity Theory and Finance in Handbook 
of Statistics. Vol. 14. North Holland, N.Y: Statistical Methods in 
Finance.

Brooks, M.J., West, J. (2013), The European energy complex: An 
integrated market? The Electricity Journal, 26(5), 52-64.

Brown, S.P.A., Yücel, M.K. (2007), What Drives Natural Gas Prices? 
Research Department Working Paper No. 0703, Federal Reserve 
Bank of Dallas.

Bunn, D.W. (2004), Structural and behavioral foundations of competitive 
electricity prices. In: Modeling Prices in Competitive Electricity 
Markets. New York: NBER.

Choi, K., Hammoudeh, S. (2010), Volatility behavior in oil, industrial 
commodity and stock markets in a regime-switching environment. 
Energy Policy, 38(8), 4388-4399.

Daskalakis, G., Psychoyios, D., Markellos, R.N. (2009), Modeling 
CO2 emission allowances prices and derivatives: Evidence from 
the European trading scheme. Journal of Banking and Finance, 33, 
1230-1241.

Elving, R. (2011), Evolution of Equity Market Integration on Sectoral 
Level: A Time-Varying Approach to Analyzing the Impact of EMU. 

Figure 10: Impulse responses of smp to one S.D. innovations from the other endogenous variables



Papaioannou, et al.: Using a Rolling Vector Error Correction Model to Model Static and Dynamic Causal Relations between Electricity Spot Price and Related 
Fundamental Factors: The case of Greek Electricity Market

International Journal of Energy Economics and Policy | Vol 8 • Issue 1 • 2018 53

Master Thesis, Department of Economics, Lund University.
Emery, G.W., Liu, Q. (2002), An analysis of the relationship between 

electricity and natural gas futures prices. The Journal of Futures 
Markets, 22(2), 95-122.

Engle, R.F., Granger, C.W.L. (1987), Co-integration and error correction: 
Representation, estimation, and testing. Econometrica, 55(2), 251-
276.

Ewing, B.T., Malik, F., Ozfidan, O. (2002), Volatility transmission in 
the oil and natural gas markets. Energy Economics, 24(6), 525-538.

Ferkingstand, E. (2011), Casual modeling and inference for electricity 
markets. Energy Econ 33, 404-412.

Fratzscher, M. (2001), Financial Market Integration in Europe: On The 
Effects of EMU on Stock Markets. European Central Bank Working 
Paper Series No. 48.

Frydenberg, S., Onochie, J.I., Westgaard, S., Midstund, N., Ueland, H. 
(2014), Long-term relationships between electricity and oil, gas 
and coal future prices-evidence from Nordic countries, Continental 
Europe and the United Kingdom. OPEC Energy Review, 32(8), 
216-242.

Furio, D., Chulia, H. (2012), Price and volatility dynamics between 
electricity and fuel costs: Some evidence for Spain. Energy 
Economics, 34, 2058-2065.

Granger, C.W.J. (1969), Investigating causal relations by econometric 
models and cross-spectral methods. Econometrica, 37(3), 424-438.

Hamilton, J.D. (1994), Time Series Analysis. Princeton, NJ: Princeton 
University Press.

Hartley, P.R., Medlock, K.B. 3rd., Rosthal, J. (2008), The relationship of 
natural gas to oil prices. Energy Journal, 29(3), 47-65.

He, Y.X., Liu, Y.Y., Xia, T., Zhou, B. (2014), Estimation of demand 
response to energy price signals consumption behavior in Beijing 
China. Energy Conversion and Management, 80, 429-435.

Henriques, I., Sadorsky, P. (2008), Oil prices and the stock prices of 
alternative energy companies. Energy Economics, 30(3), 998-1010.

Hondroyiannis, G., Lolos, S., Papapetrou, E. (2002), Energy consumption 
and economic growth: Assessing the evidence from Greece. Energy 
Economics 24(4), 319-336.

Johnsen, T.A. (2001), Demand generation and price in the Norwegian 
market for electric power. Energy Economics, 23(3), 227-251.

Juselius, K. (2006), The Cointegrated VAR Model. Methodology and 
Applications. Oxford: Oxford University Press.

Kanamura, T. (2010), Financial Turmoil in Carbon Markets. 
SSRN eLibrary. Available form: https://www.doi.org/10.2139/
ssrn.1652735.

Kirat, D., Ahamada, I. (2011), The impact of the European Union 
emission trading scheme on the electricity-generation sector. Energy 
Economics, 33, 995-1003.

Koch, N.M. (2014), Dynamic linkages among Carbon, energy and 
financial markets: A smooth transition approach. Applied Economics, 
46(7), 715-729.

Lucey, B.M., Gilmore, C.G., McManus, G.M. (2008), The dynamics of 
central European equity market comovements. The Quarterly Review 
of Economic and Finance, 48, 605-622.

Lutkenpohl, H., Kratzig, M. (2004), New Applied time series 
Econometrics. New York: Cambridge University Press.

Madaleno, M., Moutinho, V., Mota, J. (2015), Time relationships 
among electricity and fossil fuel prices: Industry and households 
in Europe. International Journal of Energy Economics and Policy, 
5(2), 525-533.

Madaleno, M., Pinho, C., Ribeiro, C. (2014), Commodity price interaction: 
CO2 allowances, fuel sources and electricity. The interrelationship 
between financial and energy markets. Lecture Notes in Energy, 
54, 185-213.

Mensah, E.J., Huchet-Bourdon, M., Latruffe, L. (2014), Infrastructure 
access and household welfare in rural Ghana. African Development 

Review, 26(3), 508-519.
Mizrach, B., Otsubo, Y. (2011), The Market Microstructure of the 

European Climate Exchange. SSRN Working Paper No. 1621640. 
New Brunswick, NL: Rutgers University.

Mohammadi, H. (2009), Electricity prices and fuel costs: Long-run 
relation and short-run dynamics. Energy Economics, 31, 503-509.

Moutinho, V., Vieira, J., Moreira, A.C. (2011), The crucial relationship 
among energy commodity prices: Evidence from the Spanish 
electricity market. Energy Policy, 39(10), 5898-5908.

Pagan, A. (1987), Three econometric methodologies: A critical appraisal. 
Journal of Economic Surveys, 1(1), 3-24.

Panagiotidis, T., Rutlegde, E. (2004), Oil and Gas Markets in the 
UK: Evidence from a Cointegrating Approach. Discussion Paper 
No. 2004-18; 2006.4.

Papaioannou, G., Dikaiakos, C., Dagoumas, A., Dramountanis, A., 
Papaioannou, P. (2017), Detecting the Impacts and Regulatory 
Reforms on the Greek Wholesale Electricity Market using a 
SARMAX/GARCH model. Journal of Energy (Accepted for 
Publication-Manuscript Number. EGY-D-16-04812)

Papaioannou, G., Karytinos, A. (1995), Nonlinear time series analysis of 
the stock exchange: The case of an emerging market. International 
Journal of Bifurcation and Chaos, 5, 1557-1584.

Papaioannou, P., Papaioannou, G., Sietos, K., Stratigakos, A., 
Dikaiakos, C. (2017), Dynamic conditional correlation between 
electricity, energy (commodity) and financial markets during 
the financial crisis in Greece. Journal of Mathematical Finance 
(JMF) 7(4), 44.

Paulsen, K. (1984), Order determination of multivariate autoregressive 
time series with unit roots. Journal of Time Series Analysis, S, 
95-131.

Payne, J.E. (2010a), Survey of the international evidence on the causal 
relationship between energy consumption and growth. Journal of 
Economic Studies, 37, 53-95.

Petrella, A., Sapio, A. (2012), Assessing the impact of forward trading, 
retail liberalization, and white certificates on the Italian wholesale 
electricity prices. Energy Policy, 40, 307-317.

Polemis, M. (2007a), Modelling industrial energy demand in Greece using 
co-integration techniques. Energy Policy, 35, 4039-4050.

Polemis, M.L., Dagoumas, A.S. (2013), The electricity consumption and 
economic growth nexus: Evidence from Greece. Energy Policy, 62, 
798-808.

RAE. (2009, 2010, 2011, 2012, 2013), National Reports to the European 
Commission, Regulatory Authority for Energy, RAE’s. Available 
from: http://www.rae.gr.

Serletis, A., Herbert, J. (1999), The message in North American energy 
prices. Energy Economics, 21(5), 471-483.

Strozzi, F., Zaldivar, J.M., Zbilut, J.P. (2002), Application of nonlinear 
time series analysis techniques to high frequency currency exchange 
data. Physica A, 312, 520-538.

Theodorou, P., Karyambas, D. (2008), Modelling the return and volatility 
of the Greek electricity marginal system price. Energy Policy, 36, 
2601-2609.

Tsay, R.S. (1984), Order selection in nonstationary autoregressive models. 
Annals of Statistics, 12, 1425-1433.

Vahvilainen, I., Pyykkonen, T. (2005), Stochastic factor model for 
electricity spot price – The case of the Nordic market. Energy 
Economics, 27(2), 351-367.

Villar, J.A., Joutz, F.L. (2006), The relationship between crude oil and 
natural gas prices. Energy Information Administration. Washington, 
D.C: Office of Oil and Natural Gas.

Weron, R. (2006), Modeling and Forecasting Electricity Loads and Prices: 
A Statistical Approach. Chichester: John Wiley & Sons.

Yucel, M.K., Guo, S. (1994), Fuel taxes and cointegration of energy prices. 
Contemporary Economic Policy, 73(3), 15-21.



Papaioannou, et al.: Using a Rolling Vector Error Correction Model to Model Static and Dynamic Causal Relations between Electricity Spot Price and Related 
Fundamental Factors: The case of Greek Electricity Market

International Journal of Energy Economics and Policy | Vol 8 • Issue 1 • 201854

APPENDIX A

Table A1: Estimated parameters of the error correction term
Cointegrating Eq: LOG (SMP(-1)) LOG (BRENT(-1)) LOG (EUA(-1)) LOG (NGASUK(-1)) LOG (LIGNITE(-1)) C
CointEq1 1.000000 0.037607

(0.10305)
[0.36493]

−0.316053
(0.06945)

[−4.55054]

−0.541192
(0.08597)

[−6.29512]

0.096060
(0.21190)
[0.45332]

−2.092.470

Standard errors in () and t-statistics in [ ]

Table A2: Estimated parameters of the VECM
Error correction: D (LOG (SMP)) D (LOG (BRENT)) D (LOG (EUA)) D (LOG (NGASUK)) D (LOG (LIGNITE))
CointEq1 −0.140071 0.000801 0.003196 −0.000931 0.003248

(0.01264) (0.00154) (0.00241) (0.00209) (0.00145)
[−11.0809] [0.52111] [1.32842] [−0.44554] [2.23525]

D (LOG (SMP(−1))) −0.226265 −0.002796 0.002419 0.001708 0.002615
(0.02102) (0.00256) (0.00400) (0.00348) (0.00242)

[−10.7621] [−1.09370] [0.60463] [0.49134] [1.08185]

D (LOG (BRENT(−1))) 0.030008 −0.026034 −0.082231 −0.048061 −0.020724
(0.18111) (0.02203) (0.03447) (0.02995) (0.02082)
[0.16568] [−1.18196] [−2.38554] [−1.60490] [−0.99533]

D (LOG (EUA(−1))) −0.041656 0.018851 0.049192 0.019170 0.002477
(0.11603) (0.01411) (0.02208) (0.01919) (0.01334)

[−0.35901] [1.33589] [2.22748] [0.99917] [0.18567]
D (LOG (NGASUK(−1))) 0.117805 0.042176 −0.015451 0.000148 0.026850

(0.13150) (0.01599) (0.02503) (0.02174) (0.01512)
[0.89583] [2.63711] [−0.61733] [0.00679] [1.77600]

D (LOG (LIGNITE(−1))) −0.092838 −0.008593 −0.025954 0.025660 −0.232013
(0.18234) (0.02218) (0.03470) (0.03015) (0.02096)

[−0.50916] [−0.38749] [−0.74786] [0.85111] [−11.0683]
C −0.000174 2.21E-05 −0.000558 −2.84E-06 0.000440

(0.00324) (0.00039) (0.00062) (0.00054) (0.00037)
[−0.05370] [0.05601] [−0.90494] [−0.00531] [1.18246]

Standard errors in ( ) and t-statistics in [ ]


