
International Journal of Energy Economics and Policy | Vol 8 • Issue 5 • 2018 125

International Journal of Energy Economics and 
Policy

ISSN: 2146-4553

available at http: www.econjournals.com

International Journal of Energy Economics and Policy, 2018, 8(5), 125-137.

Advanced Metering Infrastructure and Distributed 
Generation: Panel Causality Evidence from New Zealand

Fatih Cemil Ozbugday1*, Onder Ozgur2

1Ankara Yildirim Beyazit University, Turkey, 2Ankara Yildirim Beyazit University, Turkey. *Email: fcbugday@gmail.com

ABSTRACT

Both the relevant literature and the regulatory authorities’ policy reports suggest that there is a relationship between smart meters and distributed 
generation (DG) and that an essential tool for the integration of DG into electric systems is the smart meter technology. However, to date, there has 
been no formal or scientific test of this proposition. This article examines the relationship between advanced metering infrastructure (AMI) and DG, 
which are expected to be among the critical components of future electricity markets. For this purpose, long monthly time series data were used for 
four different consumer groups (commercial, industrial, residential and small- and medium-sized enterprises) for the network reporting regions in 
New Zealand and a panel Granger causality analysis was conducted. The econometric results establish a two-way causality relationship between AMI 
penetration and DG uptake rate. These findings are in line with the propositions in the literature and policy papers, and they comprise policy implications.
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1. INTRODUCTION

The industrial organization of electricity markets has been 
experiencing a radical transformation. Once organized around a 
single vertically-integrated company, energy markets have gone 
through a restructuring process in which competitive segments 
such as generation and retail are vertically separated from 
natural monopoly networks and liberalized. The liberalization of 
generation and retail segments brought many opportunities that 
did not exist before. One of these opportunities is “distributed 
generation (DG).”

DG can be briefly defined as small-scale electricity generation 
at the point of consumption using mostly renewable resources 
such as solar or wind power1. With the rise of DG, instead of just 
consuming electricity, consumers can also generate electricity 
(Pepermans et al., 2005). On-site generation reduces the load on 
the grid and becomes a substitute for distribution and transmission 
lines investment and massive generating plants construction 
(El-Khattam and Salama, 2004). It is a cost-effective way of 

1 For a more detailed definition, Ackermann et al. (2005).

improving reliability and power quality (Lopes et al., 2007). By 
increasing voltage in the network, DG can also offer ancillary 
services and improve quality of supply (Bayod-Rujula et al., 
2009). Furthermore, DG technologies alleviate environmental 
problems (Akorede et al., 2010) and enhance energy security via 
diversification of energy sources (Lopes et al., 2007). However, 
all these benefits require the integration of DG into electric power 
system, which requires exhaustive technical (Viral and Khatod, 
2013; Paliwal et al., 2014; Tan et al., 2014; Prakash and Khatod, 
2016), regulatory (Cossent et al., 2009; De Joode et al., 2009; 
Frías et al., 2009), and economic planning (Vogel, 2009; Ropenus 
et al., 2011; El-Khattam et al., 2004). All these thorough planning 
requires detailed and timely information.

One source of required increased and detailed information is 
advanced metering infrastructure (AMI) or smart meters. By 
generating more accurate consumption data on a shorter time 
interval basis, enabling remote reading and automatic meter 
data processing, and two-way communication for consumer 
involvement, smart meters allow the integration of DG into the 
electric power system. Consumers have more information and 
control over the amount and timing of their electricity consumption 
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owing to AMI, and thus can calculate the benefits from the on-site 
generation more precisely.

On the electricity distribution side, AMI enables electricity distributors 
to operate, control and manage their networks more effectively since 
they have better information about the current situation about power 
demand and supply in the grid (Bae et al., 2014). When DG capacity 
is increased in the grid, optimizing the usage of the network requires 
more timely and accurate metering information which can only 
be provided by smart meters. Furthermore, network operators can 
better manage the variability brought about by the integration of 
DG with intermittent generation structure (e.g., solar panels) owing 
to the metering information. Thus, accommodating more on-site 
generation, especially for sources with intermittent nature, would 
be much more comfortable with AMI.

In brief, the literature on smart grids puts forward that these will 
facilitate DG, especially from renewable sources (Wolsink, 2012; 
Farhangi, 2010). AMI maximizes the value of DG to both their 
owners and the distribution network. Therefore, adding more DG 
necessitates a smarter network with AMI. This idea is also voiced 
in the European Commission’s Communication on a Roadmap 
for Moving to a Competitive Low-Carbon Economy in 2050 (EU 
COM, 2011), which identifies investment in smart grids as a critical 
enabler for a future low-carbon electricity system, facilitating, 
inter alia, increased shares of renewables and DG.

However, despite the abundance of arguments suggesting that 
smart meters facilitate the integration and penetration of DG, no 
formal study relates the presence of smart meters to DG uptake. 
The primary objective of this paper is to investigate the role of 
AMI on DG uptake rate in New Zealand context.2 To this end, 
we use monthly data from retail reports published in the website 
of New Zealand Electricity Authority (https://www.emi.ea.govt.
nz/Retail/Reports) and perform panel time series analyses to 
identify the causality relationship between AMI penetration and 
DG uptake rate for four consumer groups (commercial, industrial, 
residential, and small-and medium-sized enterprise [SME]). The 
results of the analyses indicate a bidirectional causality between 
AMI penetration and DG uptake rate for all consumer segments.

The originality of the paper stems from that it is the first study in the 
relevant literature that examines the relationship between AMI and 
DG empirically. In doing so, the study provides a disaggregated 
analysis where detailed time series data for different consumer 
segments are used.

The structure of the paper is as follows: Section 2 describes the 
data used in the study and explains the methodology. Empirical 

2 New Zealand is comparable to the United Kingdom in terms of land size. 
It has a population of approximately 4.8 million. Since the country consists 
of two islands located in a remote region of the southern hemisphere, the 
electricity sector is closed and self-sufficient. There are no means for export 
or import of electricity. The unique and radical approach to the restructuring 
and deregulation of the electricity industry makes the New Zealand case 
even more interesting (Bertram and Twaddle, 2005; Nillesen and Pollitt, 
2011; Ozbugday and Nillesen, 2013). It has been the first country to have 
ever implemented the ownership unbundling of electricity retailing from 
distribution.

results are displayed in Section 3. Finally, Section 4 discusses the 
findings and concludes.

2. DATA AND METHODOLOGY

2.1. Data Source and Variables
The data for the study are compiled from retail reports published 
on the website of New Zealand Electricity Authority (https://
www.emi.ea.govt.nz/Retail/Reports). The retail reports include 
monthly data on a wide range of indicators at network reporting 
region level. Network reporting regions are mainly formed by 
traditional Electricity Power Board networks and harmonize with 
pricing regions conventionally used in the retail market.3 Our data 
cover 30 network reporting regions, which represent the whole 
New Zealand territory. These regions are displayed in Table 1. 
In each region, four different customer segments are defined: 
Residential, commercial, SME and industrial. These market 
segments, however, are not necessarily mutually exclusive. The 
market segment breakdowns start from September 2013.

To construct the variables to be used in the analysis, we use 
installation control points (ICP), and AMI counts in a region. ICP 
count is the total number of ICPs in a network reporting region. 
An ICP is a physical connection point on a network, and it is the 
point at which a retailer supplies electricity to a consumer. AMI 
count in a network reporting region is given as the total number 

3 https://www.emi.ea.govt.nz/Glossary#N

Table 1: List of network reporting regions
Region name
Ashburton (electricity ashbuzrton)
Auckland (vector)
Bay of Islands (top energy)
Buller (buller electricity)
Central canterbury (orion New Zealand)
Central Otago (aurora energy)
Counties (counties power)
Eastern bay of plenty (horizon energy)
Eastland (Eastland network)
Hawke’s Bay (Unison networks)
Kapiti and Horowhenua (electra)
King Country (The Lines Company)
Manawatu (Powerco)
Marlborough (Marlborough Lines)
Queenstown (aurora energy)
South Canterbury (alpine energy)
Southland (The Power Company)
Taranaki (Powerco)
Tasman (Network Tasman)
Taupo (Unison networks)
Tauranga (Powerco)
Thames Valley (Powerco)
Waikato (WEL Networks)
Waipa (Waipa networks)
Wairarapa (Powerco)
Waitaki (Network Waitaki)
Waitemata (vector)
Wanganui (powerco)
Wellington (wellington electricity)
Whangarei and Kaipara (Northpower)
Names in parentheses are the names of the network operator in the region
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of ICPs with AMI. AMI, in this context, is an integrated system 
of smart meters, data management systems, and communications 
networks that allows two-way communication between customers 
and suppliers.4 We calculate AMI PENETRATION in a region 
by dividing AMI count by ICP count. The second variable of 
interest, DG UPTAKE RATE, is the percentage of ICPs that have 
installed DG in a network reporting region. These two variables 
are constructed for four different consumer groups including 
residential, commercial, SME and industrial. The definitions and 
details of these variables are presented in Table 2.

Descriptive statistics for these variables are provided in Table 3. 
Furthermore, Figures 1-8 in Appendices demonstrate the evolution 
of these variables over time for each network reporting region. As 
can be seen from the figures, there seem to be trends for both AMI 
PENETRATION and DG UPTAKE RATE for various consumer 
segments. These trends will be considered in the empirical 
analysis.

2.2. Methodology
This study performs panel data analyses to identify the causality 
relationship between AMI PENETRATION and DG UPTAKE 
RATE in four consumer groups including commercial, industrial, 

4 https://www.smartgrid.gov/recovery_act/deployment_status/sdgp_ami_
systems.html

residential, and SME. Before proceeding with the implementation 
of the causality analysis between variables of interest, there are 
two primary tasks needed to be executed. First proposition to be 
tested is whether there is a cross-sectional dependence across the 
panel units. If the large cross-sectional dependence is not dealt 
with proper estimation methods, one may not get the efficiency 
improvement arising from panel data estimation (Bhattacharya 
et al., 2016). Cross-sectional dependence, on the other hand, will 
guide us to select the appropriate unit root testing procedure. 
Performing first generation unit root tests ignoring the cross-
sectional dependence provides biased results (Menyah et al., 2014). 
The analysis, therefore, goes on with the estimation of panel unit 
root and stationary tests to derive time series properties of the 
variables before proceeding to test for causality analysis.

In the presence of common regulatory or economic shocks, cross-
sectional dependence across network reporting regions should 
exist. Therefore, in the current analysis, we first investigate 
whether there exists cross-sectional dependence among our 
observational units.

2.2.1. Testing for cross-sectional dependence
To test the cross-sectional dependence on panel data, the current 
paper first employs the well-known Breusch-Pagan LM test 
procedure proposed by Breusch and Pagan (1980). This testing 
procedure in the context of fixed N and as T→∞ is based on an 

Table 2: Definitions of the variables
Variable Definition Market 

Segment
Period

ICP COUNT The total number of ICPs in a network reporting 
region. An ICP is a physical connection point on 
a network and it is the point at which a retailer 
supplies electricity to a consumer

Residential 2013 September-2017 July (47 months)
Commercial 2013 September-2017 July (47 months)
SME 2013 September-2017 July (47 months)
Industrial 2013 September-2017 July (47 months)

AMI COUNT The total number of ICPs with AMI in a network 
reporting region. AMI is an integrated system 
of smart meters, data management systems, and 
communications networks that allows two-way 
communication between customers and suppliers.

Residential 2013 September-2017 July (47 months)
Commercial 2013 September-2017 July (47 months)
SME 2013 September-2017 July (47 months)
Industrial 2013 September-2017 July (47 months)

AMI PENETRATION AMI count/ICP count Residential 2013 September-2017 July (47 months)
Commercial 2013 September-2017 July (47 months)
SME 2013 September-2017 July (47 months)
Industrial 2013 September-2017 July (47 months)

DG UPTAKE RATE The percentage of ICPs that have installed DG in a 
network reporting region.

Residential 2013 September-2017 July (47 months)
Commercial 2013 September-2017 July (47 months)
SME 2013 September-2017 July (47 months)
Industrial 2013 September-2017 July (47 months)

AMI: Advanced metering infrastructure, DG: Distributed generation, ICPs: Installation control points, SME: Small-and medium-sized enterprise

Table 3: Descriptive statistics
Variables Mean Median Maximum Minimum Standard deviation Observations
AMI PENETRATION COMMERCIAL 31.646 30.605 71.781 0.257 21.213 1410
AMI PENETRATION INDUSTRIAL 34.329 33.276 81.348 0.174 23.901 1410
AMI PENETRATION RESIDENTIAL 49.064 50.893 97.382 0.015 29.611 1410
AMI PENETRATION SME 36.500 35.779 84.734 0.252 24.461 1410
DG UPTAKE RATE COMMERCIAL 0.218 0.166 0.949 0.029 0.174 1410
DG UPTAKE RATE INDUSTRIAL 0.449 0.340 1.750 0.030 0.358 1410
DG UPTAKE RATE RESIDENTIAL 0.497 0.396 2.166 0.033 0.385 1410
DG UPTAKE RATE SME 0.203 0.152 0.933 0.010 0.168 1410
AMI: Advanced metering infrastructure, DG: Distributed generation, SME: Small-and medium-sized enterprise
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LM statistics which is estimated by the pair-wise correlation of 
the fitted-model residuals. Fitted model computed by ordinary 
least squares (OLS) allows intercept and slope coefficients to 
vary across units.

The Breusch-Pagan LM test considers the following panel data 
specification (Menyah et al., 2014):

'
it i i it ity x  = + +  (1)

For i=1, 2,…, N and t=1, 2,…, T, where i represents panel units, t 
is the time dimension, xit is a kx1 vector for regressors, αi, and βi 
are the individual intercepts and slope coefficients, respectively. 
The LM test statistic is calculated as follows (Breusch and Pagan 
(1980):

1
2

1 1

 ˆ
N N

ij
i j i

Breusch Pagan LM T 
−

= = +

− = ∑∑
  (2)

Figure 1: The evolution of advanced metering infrastructure PENETRATION in the commercial segment

The monthly data run from September 2013 to July 2017

Figure 2: The evolution of advanced metering infrastructure PENETRATION in the industrial segment

The monthly data run from September 2013 to July 2017
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Where ˆ
Ij


 is the pair-wise correlation of the residuals from 
Equation (1). Breusch-Pagan LM statistics has a χ2 distribution 

with 
( )1

2
N N −

 degrees of freedom under the null of zero 

correlation.

This paper then performs the bias-adjusted LM test of error cross-
section independence proposed by Pesaran et al. (2008) for large 

panel data sets when N→∞ and T→∞. The modified version of 
the LM test uses the exact mean and variance of the LM statistics. 
CDLM adjusted test modifies the Breusch-Pagan LM test by using 
exact mean and variance of the LM statistics. CDLM adjusted 
test statistics can be calculated as follows (Pesaran et al., 2008):

( )
( ) 21

1 1

2
1

ˆN N
ij Tij

adj
Tiji j i

T k µ
CDLM

N N 
−

= = +

− −
=

− ∑∑
 (3)

Figure 3: The evolution of advanced metering infrastructure PENETRATION in the residential segment

The monthly data run from September 2013 to July 2017

Figure 4: The evolution of advanced metering infrastructure PENETRATION in the small-and medium-sized enterprise segment

The monthly data run from September 2013 to July 2017
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Where µTij shows mean and ⱱTij represents variance. CDLM 
adjusted test statistic has asymptotically standard normal 
distribution. The null hypothesis of this test assumes cross-
sectional independence against the alternative of cross-sectional 
dependence.

2.2.2. Unit root and stationarity tests
Since first-generation unit root tests for panel data are not robust 
and provide a minor improvement in the case of cross-sectional 

dependence, this paper performs second-generation panel unit 
root tests and identify the order of integration for each variable. 
The first one performed is the well-known Cross-Sectionally 
Augmented Dickey-Fuller (CADF) Test which is proposed by 
Pesaran (2006) and considers both heterogeneity and cross-
sectional dependence across panels. This test modifies the 
standard ADF regression with lagged values and first differences 
of individual series. CADF test procedure provides t-statistics 
for individual cross-section units. The simple average of the 

Figure 5: The evolution of distributed generation UPTAKE RATE in the commercial segment

The monthly data run from September 2013 to July 2017

Figure 6: The evolution of distributed generation UPTAKE RATE in the industrial segment

The monthly data run from September 2013 to July 2017
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individual CADF statistics, referred as Cross-Sectionally 
Augmented IPS statistics, allows to infer the order of each series 
in the panel context.

A simple dynamic linear heterogeneous panel data model is 
represented as follows (Pesaran, 2007):

xit=(1-∅i)μi+∅ixi,t-1+uit (4)

for i = 1…., N; t = 1…, T, where is the observation on ith cross-
section unit at time t.

CADF test procedure then estimates the following model by OLS.

, 1 1

, 1 , ,0

i

i

p
it i i i t ijj

p
i t j i i t ij i t j i tj

x x c

x d t h x x

 

 

− =

− − −=

∆ = + + Σ

+ + + Σ +
 (5)

Figure 7: The evolution of distributed generation UPTAKE RATE in the residential segment

The monthly data run from September 2013 to July 2017

Figure 8: The evolution of distributed generation UPTAKE RATE in the small-and medium-sized enterprise segment

The monthly data run from September 2013 to July 2017
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The model incorporates the cross section means of the current 
value of xit, lagged values of xit and lagged values of the 
differenced cross-section mean for an approximation of common 
factor. This procedure solves the potential autocorrelation 
problem.

CIPS statistic is the average of the individual t values obtained by 
CADF regression (Pesaran, 2007):

1

1  
N

i
i

CIPS CADF
N =

= ∑
 (6)

CIPS test performs the null hypothesis that all individual units 
are not stationary against the alternative that at least one unit is 
stationary.

On the other hand, the study also performs another test developed 
by Carrion-i Silvestre et al. (2005), which allows structural breaks 
in the series and is labeled as panel KPSS (PANKPSS). Since 
structural breaks can affect the limiting distribution of individual 
statistics, controlling structural shifts is crucial to coping with the 
size distortion problem (Nazlioglu and Karul, 2017). PANKPSS 
test also considers both heterogeneity and cross-sectional 
dependence across panels under the null of the stationary.

The model proposed by Carrion-i Silvestre et al. (2005) to test the 
null hypothesis of stationarity is as follows:

it it i ity t u = + +  (7)

For i = 1…., N; t = 1…, T; where,

( ), , , , , , 1 ,1 1
i im mi

it i k b k i k i k t i t i tk kt
D T DU    −= =

= + + +∑ ∑ .

In this equation, ϑi,t is i.i.d with mean 0, and 2
i  variance, αi,0=αi, 

for i = 1…., N individuals; t = 1…, T time periods.

( ),
i

b k t
D T  and DUi,k,t are dummy variables and defined as follows:

( ) ,
,

1,  | 1
0,  |

i
i b k

b k t

t TD T
elsewhere

 = += 


,
, ,

1,  |
0,  |

 >= 


i
b k

i k t
t TDU

elsewhere

Where ,
i

b kT  represents kth the date of break for ith individual. This 
model allows for multiple structural breaks up to k = 1…., m with 
an assumption that µit and ϑi,t are independently distributed. Under 

the null hypothesis that 2
, 0i = , equation (7) can be written in 

the following form (Carrion-i Silvestre et al. (2005)):

*
, , , , , , ,

1 1

i im m

it i k i k t i k i k t i i t
k k

y DU DT t u   
= =

= + + +∑ ∑
 (8)

Where

* , , ,
, ,

,  
0,  

i i
b k t b k

i k t
t T t TDT

elsewhere

 − >= 


Thus, this model allows that the structural shifts have different 
effects over cross-sectional units, they exist at various points in 
time for each unit, and the number of breaks differs among these 
cross-sections. Under the heterogeneity assumption, the formula 
for the test statistic can be represented by the following equation:

( ) 2 2 2
,

1 1

ˆ1 ˆ
N T

i i t
i t

LM T S
N

  − −

= =

 
=  

 
∑ ∑

 (9)

Where 2 2
1

1ˆ ˆN
iiN

 
=

= ∑ ,

2
,1

t2
i,t i ji

S u
=

=∑ , and λi is a vector that represents the relative 
position of the break dates during the period T for each cross-
sectional unit.

2.2.3. Panel causality test
Identifying the causal relationships between variables of interest 
are essential for policymakers to implement appropriate policies. 
This paper, therefore, performs the causality analysis proposed 
by Dumitrescu and Hurlin (2012). This test extends the standard 
Granger causality analysis to panel data context by testing cross-
sectional linear restrictions on the coefficients of the model. The 
testing procedure considers both the heterogeneity in the model 
and the heterogeneity of the causal relationship. The advantages 
of this test are as follows (Dogan and Seker, 2016): (i) The test 
is flexible in cases of both T>N and N>T, (ii) it provides robust 
results for unbalanced and heterogenous panels, (iii) this test can 
be employed in the presence of cross-sectional dependence and, 
(iv) the current test solves the problems posed by homogeneity 
assumption of the standard Granger causality test.

The linear heterogenous panel regression model of Dumitrescu 
and Hurlin (2012) test is as follows:

( ) ( )
, , , ,

1 1

K K
k k

i t i i i t k i i t k i t
k k

y y x   − −
= =

= + + +∑ ∑
 (10)

Where yi,t and xi,t stand for two stationary variables, εi,t is error term.

( )'(1) ( ), , K
i i i  = …  and the individual effects ai are assumed to 

be fixed in the time dimension.

This non-causality test proposes an average Wald statistic that 
tests the null hypothesis of no causal relationship between any 
of the individual panel units against the alternative of the causal 
relationship that occurs at least one cross-section unit of the panel.

H0=βi=0 for ∀i=1,…,N
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1
1

1

0  1, , 
0  1, , 

i i

i i

for N
H

for N N



= ∀ = … 

=  ≠ ∀ = + … 

Having described the methodology, we present the results of the 
analyses in the next section.

3.  EMPIRICAL RESULTS

3.1. Cross-sectional Dependence Tests
Before investigating the stationarity of AMI PENETRATION and 
DG UPTAKE RATE variables for each group, we first perform 
the Breusch-Pagan LM and Bias-Corrected Scaled LM tests. The 
results of cross-sectional dependence tests are presented in Table 4, 
which displays the test statistics and their probability values.

Since the relevant probability values are smaller than 0.05, they 
provide supportive evidence to reject the null hypothesis of cross-
sectional independence for AMI PENETRATION and DG UPTAKE 
RATE in all consumer segments. Since these groups operate under 
the same regulatory environment and there are regional linkages 
among the panel units, a shock affecting one individual unit also 
creates spillover effects to other panel units.

3.2. Unit Root Tests
In the presence of cross-sectional dependence across the panel 
units, employing first-generation panel unit root tests may provide 

misleading results. Since employed variables are in favor of cross-
sectional dependence, this study performs second-generation unit 
root tests, namely CADF test and PANKPSS tests considering 
correlations among panel units.

Table 5 shows CADF test results, which consists of constant 
and trend terms. CIPS statistics derived from CADF test 
displays mixed results. On the one hand, results with 
constant do not reject the null of a unit root for the variables 
AMI PENETRATION COMMERCIAL, DG UPTAKE RATE 
COMMERCIAL, AMI PENETRATION INDUSTRIAL, AMI 
PENETRATION RESIDENTIAL, and DG UPTAKE RATE 
RESIDENTIAL whereas the test statistics for other variables 
reject the null hypothesis at 5% percent level. On the other 
hand, the results with constant and trend imply that variables 
AMI PENETRATION COMMERCIAL, DG UPTAKE RATE 
COMMERCIAL ,  AMI PENETRATION INDUSTRIAL , 
DG UPTAKE RATE INDUSTRIAL, AMI PENETRATION 
RESIDENTIAL, and AMI PENETRATION SME are not 
stationary in their levels (I(1)) whereas the other variables seem 
to be stationary (I(0)).

Critical values of stationarity test for constant model is −2.30, 
−2.16, and −2.08 for 1%, 5% and 10%; and the critical values for 
constant and trend model is −2.78, −2.65, −2.58 for 1%, 5% and 
10% respectively. *,**and *** represent the stationarity with these 
significance levels. ∆ denotes the first difference. A maximum 

Table 4: Results of the cross-sectional dependence tests
Variables Breusch-Pagan LM Bias-corrected scaled LM

Statistic Prob. Statistic Prob.
AMI PENETRATION COMMERCIAL 18,014.900 0.000 595.688 0.000
DG UPTAKE RATE COMMERCIAL 11,491.430 0.000 374.521 0.000
AMI PENETRATION INDUSTRIAL 16,560.720 0.000 546.387 0.000
DG UPTAKE RATE INDUSTRIAL 8,238.859 0.000 264.249 0.000
AMI PENETRATION RESIDENTIAL 17,287.870 0.000 571.039 0.000
DG UPTAKE RATE RESIDENTIAL 18,975.450 0.000 628.254 0.000
AMI PENETRATION SME 17,677.860 0.000 584.261 0.000
DG UPTAKE RATE SME 141,87.220 0.000 465.918 0.000
AMI: Advanced metering infrastructure, DG: Distributed generation, SME: Small-and medium-sized enterprise

Table 5: CADF test results
Variables CADF test (CIPS statistics)

Constant Constant and trend
AMI PENETRATION COMMERCIAL −1.570 −2.115
∆ (AMI PENETRATION COMMERCIAL) −3.190* −3.657*
DG UPTAKE RATE COMMERCIAL −2.098*** −2.239
∆ (DG UPTAKE RATE COMMERCIAL) −4.148* −4.463*
AMI PENETRATION INDUSTRIAL −1.659 −2.218
∆ (AMI PENETRATION INDUSTRIAL) −3.142* −3.435*
DG UPTAKE RATE INDUSTRIAL −2.162** −2.565
∆ (DG UPTAKE RATE INDUSTRIAL) −4.290* −4.353*
AMI PENETRATION RESIDENTIAL −2.141*** −2.108
∆ (AMI PENETRATION RESIDENTIAL) −2.081*** −2.808*
DG UPTAKE RATE RESIDENTIAL −1.598 −2.426*
∆ (DG UPTAKE RATE RESIDENTIAL) −3.696* −3.932*
AMI PENETRATION SME −1.610 −2.045
∆ (AMI PENETRATION SME) −3.156* −3.473*
DG UPTAKE RATE SME −2.235** −2.343*
∆ (DG UPTAKE RATE SME) −4.266* −4.310*
AMI: Advanced metering infrastructure, DG: Distributed generation, SME: Small-and medium-sized enterprise
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lag is chosen as 9, and optimum lag is determined by SIC. SME: 
Small-and medium-sized enterprise

Since CADF test provides mixed results and it does not 
consider the structural changes, this paper additionally utilizes 
the PANKPSS test. This test allows for structural changes up 
to five breaks. The test also allows examining the stationarity 
of the series under the heterogeneity of the long-run variances 
across observational units. The results of the PANKPSS test is 
presented in Table 6.

Bootstrap critical values are also presented in the table, and the 
order of the variables are identified by comparing the tests statistics 

and bootstrap critical values. PANKPSS test results are evident 
that all the variables are stationary in their levels. All the variables, 
therefore, appear to be I(0). Thus, we can proceed to panel causality 
test with the level values of the variables.

3.3. DIMITRESCU-HURLIN PANEL 
CAUSALITY TEST RESULTS

The results of the Dumitrescu-Hurlin panel causality test for the 
first lag of the variables are illustrated in Table 75. The rejection 

5 Analyses with two or three lags are also provide comparable results. They 
are illustrated in the Appendix.

Table 6: Carrion-i silvestre (PANKPSS) test results
Variables Breaks in Constant Breaks in constant and trend

Test 
statistics (heterogenous)

Critical 
values

Test 
statistics (heterogenous)

Critical 
values 

AMI PENETRATION COMMERCIAL 25.012* 27.477 20.590* 85.300
40.663 114.858
68.739 173.502

DG UPTAKE RATE COMMERCIAL 30.327 20.847 37.155* 66.795
30.139 89.433
34.378 142.802

AMI PENETRATION INDUSTRIAL 3.905* 17.920 13.961* 147.505
25.601 184.086
50.642 258.773

DG UPTAKE RATE INDUSTRIAL −2.581* 15.260 9.386* 44.813
20.841 61.623
34.784 104.031

AMI PENETRATION RESIDENTIAL 8.061* 21.559 40.120* 75.39
30.424 102.872
54.478 153.076

DG UPTAKE RATE RESIDENTIAL 17.842* 23.457 8.459* 31.306
34.545 43.885
64.847 72.867

AMI PENETRATION SME 15.289* 24.118  11.164* 99.367
35.600 134.807
40.848 198.770

DG UPTAKE RATE SME 2.672* 13.098  69.838* 62.152
17.716 85.263
30.449 133.642

Critical values are 0.10, 0.05 and 0.01 respectively and obtained by 5000 bootstraps. Optimum lags are determined by Bayesian Information Criterion. Test statistics allow for 
heterogeneity in long-run variances. *Series are stationary at their levels. AMI: Advanced metering infrastructure, DG: Distributed generation, SME: Small-and medium-sized enterprise

Table 7: Dumitrescu-Hurlin panel causality test results (Lag=1)
Direction (y→x) W-stat Zbar-stat P value Conclusion
AMI PENETRATION COMMERCIAL→DG UPTAKE 
RATE COMMERCIAL

4.517 12.344 0.000 Reject H0

DG UPTAKE RATE COMMERCIAL→AMI 
PENETRATION COMMERCIAL

4.496 12.267 0.000 Reject H0

AMI PENETRATION INDUSTRIAL→DG UPTAKE 
RATE INDUSTRIAL

3.002 6.953 0.000 Reject H0

DG UPTAKE RATE INDUSTRIAL→AMI 
PENETRATION INDUSTRIAL

7.138 21.669 0.000 Reject H0

AMI PENETRATION RESIDENTIAL→DG UPTAKE 
RATE RESIDENTIAL

6.577 19.674 0.000 Reject H0

DG UPTAKE RATE RESIDENTIAL→AMI 
PENETRATION RESIDENTIAL

9.395 29.703 0.000 Reject H0

AMI PENETRATION SME→DG UPTAKE RATE SME 4.060 10.719 0.000 Reject H0
DG UPTAKE RATE SME→AMI PENETRATION SME 6.780 20.396 0.000 Reject H0

→Denotes unidirectional causality relationship. AMI: Advanced metering infrastructure, DG: Distributed generation, SME: Small-and medium-sized enterprise
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of the null hypothesis in Dumitrescu-Hurlin panel causality test 
indicates that y is the Granger cause of x for all units in an analysis.

Since the relevant probability values are smaller than 0.05, they 
favor rejecting the null of non-causality for AMI PENETRATION 
and DG UPTAKE RATE variables. The results of this analysis, 
therefore, indicates that there is bidirectional causality between AMI 
PENETRATION and DG UPTAKE RATE for all consumer segments. 
More precisely, AMI PENETRATION can be used to forecast the 
future values of DG UPTAKE RATE, as well as DG UPTAKE RATE 
can be a tool for estimating the future values of AMI PENETRATION. 
Thus, policies aiming to improve AMI PENETRATION and DG 
UPTAKE RATE significantly affect each other interchangeably.

4.  DISCUSSION AND CONCLUSION

The liberalization of electricity markets and the development 
of information technology have transformed the industrial 
organization of electricity markets. Particularly, along with 
growing environmental concerns, the future characteristics of 
electricity markets will be the networks’ getting smarter and 
generation’s becoming more distributed rather than being central. 
Examining the relationship between these two components can 
provide important clues for policymakers.

Both the relevant literature and the regulatory authorities’ 
policy reports suggest that there is a relationship between smart 
meters and DG and that an essential tool for the integration 
of DG into electric systems is the smart meter technology. 
However, to date, there has been no formal or scientific test 
of this proposition.

This article examines the relationship between AMI and DG, which 
are expected to be among the key components of future electricity 
markets. For this purpose, long monthly time series data were 
used for four different consumer groups (commercial, industrial, 
residential and SME) for the network reporting regions in New 
Zealand. First, the possible cross-sectional dependency among 
observational units because of common regulatory and economic 
shocks was tested, then unit root tests that allow cross-sectional 
dependency and structural breaks were implemented. These tests 
concluded that the data were stationary, and, therefore panel 
Granger causality tests were applied to analyze the relationship 
between AMI and DG variables.

The findings are in line with the propositions in the literature and 
policy papers, and they comprise policy implications for prospects. 
According to the results of the panel Granger causality tests, a two-
way causality relationship between AMI and DG was established 
for all consumer groups analyzed. Thus, AMI penetration can be 
used to forecast the future values of DG uptake rate, as well as 
DG uptake rate can be a tool for estimating the future values of 
AMI penetration. Therefore, policies to promote AMI or DG will 
result in the promotion of both variables.

Examining the relationship between AMI and DG empirically, 
this study is first in the literature. Since it used detailed time 
series analysis for different consumer segments, it is a more 

disaggregated analysis and, therefore, the findings are more 
convincing.
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Table 8: Dumitrescu-Hurlin panel causality test results (Lag=2)
Direction (y→x) W-stat Zbar-stat Prob. value Conclusion
AMI PENETRATION COMMERCIAL→DG UPTAKE 
RATE COMMERCIAL

5.923 9.423 0.000 Reject H0

AMI PENETRATION INDUSTRIAL→DG UPTAKE 
RATE INDUSTRIAL

4.791 6.630 0.000 Reject H0

DG UPTAKE RATE INDUSTRIAL→AMI 
PENETRATION INDUSTRIAL

5.007 7.164 0.000 Reject H0

AMI PENETRATION RESIDENTIAL→DG UPTAKE 
RATE RESIDENTIAL

6.282 10.311 0.000 Reject H0

DG UPTAKE RATE RESIDENTIAL→AMI 
PENETRATION RESIDENTIAL

4.485 5.873 0.000 Reject H0

AMI PENETRATION SME→DG UPTAKE RATE SME 5.815 9.156 0.000 Reject H0
DG UPTAKE RATE SME→AMI PENETRATION SME 3.774 4.120 0.000 Reject H0

→denotes unidirectional causality relationship. SME: Small-and medium-sized enterprise. AMI: Advanced metering infrastructure, DG: Distributed generation, SME: Small-and 
medium-sized enterprise

Table 9: Dumitrescu-Hurlin panel causality test results (Lag=3)
Direction (y→x) W-stat Zbar-stat P value Conclusion
AMI PENETRATION COMMERCIAL→DG UPTAKE 
RATE COMMERCIAL

6.614 6.786 0.000 Reject H0

DG UPTAKE RATE COMMERCIAL→AMI 
PENETRATION COMMERCIAL

4.118 1.867 0.061 Reject H0

AMI PENETRATION INDUSTRIAL→DG UPTAKE 
RATE INDUSTRIAL

5.805 5.192 0.000 Reject H0

DG UPTAKE RATE INDUSTRIAL→AMI 
PENETRATION INDUSTRIAL

6.762 7.079 0.000 Reject H0

AMI PENETRATION RESIDENTIAL→DG UPTAKE 
RATE RESIDENTIAL

7.561 8.653 0.000 Reject H0

DG UPTAKE RATE RESIDENTIAL→AMI 
PENETRATION RESIDENTIAL

5.049 3.701 0.000 Reject H0

AMI PENETRATION SME→DG UPTAKE RATE SME 6.774 7.101 0.000 Reject H0
DG UPTAKE RATE SME→AMI PENETRATION SME 5.319 4.233 0.000 Reject H0

→Denotes unidirectional causality relationship. SME: Small-and medium-sized enterprise. AMI: Advanced metering infrastructure, DG: Distributed generation, SME: Small-and 
medium-sized enterprise
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