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ABSTRACT

As aresult of the 2007-2008 global financial crisis, traditional value-at-risk (VaR) models used to measure the market risk have been criticised for
their inaccuracy. Therefore, alternative models such as long-memory GARCH-type based VaR models have been receiving increased attention in
recent literature. In this regard, this study compares the one-day-ahead out-of-sample VaR forecasting performances of FIGARCH, HYGARCH,
and FIAPARCH models under normal, student t, and skewed student t distribution assumptions with FHS and HS model performances, which
are the most commonly applied models especially by commercial banks in practice, for eight different financial variables including energy
commodities (West intermediate crude oil and New York Harbour Conventional Gasoline regular (NYHCGR)), stock indices (NIKKEI 225 stock
market index and TSEC weighted stock index), foreign exchange rates (Euro/US Dollar (EUR/USD) and Japanese Yen/USD (JPY/USD)), and
precious metals (gold and copper). Results clearly show that the FHS model is the most appropriate model for long trading positions, to which
the relevant literature has paid more attention, whereas for short trading positions the HY GARCH model under skewed student t distribution

assumption should be preferred.
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1. INTRODUCTION

Value-at-risk (VaR) is the major tool used to measure the market
risk of a portfolio. Among alternative VaR models, generalised
autoregressive conditional heteroskedasticity (GARCH)-based
VaR models are commonly used to measure the market risk of
financial variables. However, especially after the 2007-2008
global financial crisis period, such traditional models have been
criticised because of their inability to meet accurately the market
losses. This issue is mainly attributed to the fact that standard
GARCH-type VaR models suffer from a number of shortcomings,
such as the use of short sample sizes and normal distribution
assumptions. Additionally, these kinds of models also assume that
the volatility of financial assets exhibits short-memory property. In
contrast, the relevant literature reports that the volatility of many
financial assets exhibits long memory property (Beine et al., 2002;

Baillie et al., 2007; Wu and Shieh, 2007; Kang et al., 2009; Arouri
etal., 2012; Chkili et al., 2014; Bentes, 2015). Therefore, extant
studies have paid increasing attention to alternative VaR models
in order to measure the market risk more accurately. In this regard,
long-memory GARCH-type models such as the fractionally
integrated GARCH (FIGARCH) model, introduced by Baillie et
al. (1996), the hyperbolic GARCH (HY GARCH) model, proposed
by Davidson (2004), and the fractionally integrated asymmetric
power ARCH (FIAPARCH) model, developed by Tse (1998),
have gained significant attention. For example, Lanouar (2016)
forecasts the volatility of West intermediate crude oil (WTI),
heating oil, propane, and RBOB regular gasoline future prices
based on the alternative models, and indicates that FIGARCH
and fractionally integrated exponential GARCH (FIEGARCH)
models under student t distribution assumption perform better
than GARCH, exponential GARCH (EGARCH), and Markov-
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switching GARCH models. Kang et al. (2009) find that in most
cases, the FIGARCH model provides superior performance for
Brent, WTI, and Dubai crude oil markets. Aloui and Mabrouk
(2010) test the performance of alternative long-memory GARCH
models for major crude oil and gas commodities and show
that the FIAPARCH model with skewed student t distribution
outperforms the other models. Chkili et al. (2014) use a broad set
of the most popular linear and non-linear GARCH-type models
for crude oil, natural gas, gold, and silver commodities, and find
that the FIAPARCH model with student t distribution is the most
accurate. Mabrouk and Aloui (2010), Aloui and Hamida (2014;
2015), Mabrouk and Saadi (2012), and Degiannakis (2004)
indicate that FIAPARCH with skewed student t distribution
produces the most accurate results for stock indices. Chkili et
al. (2012) examine the conditional volatility dynamics of stock
returns and exchange rates and indicate that both the univariate
FIAPARCH and bivariate constant conditional correlation (CCC)-
FIAPARCH models are much more appropriate than standard
GARCH-type model specifications in nearly all cases. Beine
et al. (2002) indicate that the exchange rate volatility measure
of the FIGARCH model outperforms the GARCH one. Wu and
Shieh (2007) estimate that different GARCH-type VaR models
for T-Bonds interest rate show that long-memory GARCH-type
models perform better than standard short-memory GARCH-type
models. Bentes (2015) employs the GARCH, integrated GARCH
(IGARCH), and FIGARCH specifications to investigate volatility
behaviour of gold returns and concludes that FIGARCH is the
best model to forecast their volatility. Arouri et al. (2012) reveal
that the autoregressive fractionally integrated moving average
(ARFIMA)-FIGARCH model outperforms other several popular
volatility models for four major precious metal commodities
(gold, silver, platinum, and palladium). Similarly, Demiralay
and Ulusoy (2014) find that the FIAPARCH model with student
t distribution provides better forecast accuracy for the same four
major precious metal commodities. Lastly, Baillie et al. (2007)
show that FIGARCH models are superior to standard GARCH
models for six different commodities (corn, soybeans, cattle,
hogs, gasoline, and gold).

It can be seen from these and similar studies that long-memory
GARCH-type models have emerged as a generally better choice
than short-memory GARCH-type models, due to the fact that
these models capture the stylised facts of financial time series
more accurately. However, an alternative approach to parametric
models is to use historical simulation and/or filtered historical
simulation models, which are popular models both in literature
and practice. These models are commonly used and employed
in a wide range of financial assets in the relevant literature,
such as stock indices, exchange rates, interest rates, energy
commodities, derivative securities, precious metals, and even
electricity markets (e.g. Hendricks, 1996; Cabedo ve Moya,
2003; Gengay ve Selcuk, 2004; Vlaar, 2000; Barone-Adesi
et al., 2002; Chan and Gray, 2006; Marimoutou et al., 2009;
Hammoudeh et al., 2011; Dario and Stefano, 2012; Hammoudeh
et al., 2013). The popularity of these models is because they
take into account the stylised facts of financial return series,
such as skewness, excess kurtosis, and non-normal distribution.

Additionally, unlike the GARCH-based VaR models, FHS and
HS models do not need a pre-specified distribution assumption
and can also be used to measure the market risk of non-linear
positions.

In this regard, the aim of this study is to compare the VaR
performances of long-memory GARCH-type models with HS and
FHS models for eight financial variables: WTI, NYHCGR, EUR/
US, JPY/USD, NIKKEI 225 stock market index, TSEC weighted
stock index, copper, and gold. This study’s main contribution to
the literature is that it examines whether or not the promising
results provided by long-memory GARCH-type models are also
valid when their performances are compared with two other
important models: FHS and HS. One of the main drawbacks in the
relevant literature is that, in most cases, long-memory GARCH-
type based studies compare the out-of-sample VaR forecasting
performance of FIGARCH, FIAPARCH, and HY GARCH models
with short-memory GARCH-type models’ performances. In other
words, they have not paid enough attention to compare the out-
of-sample VaR forecasting performance of these long-memory
GARCH-type VaR models with a non-parametric (i.e., HS) and/
or semi-parametric (i.e., FHS) model, as of yet. Additionally,
both long and short trading positions are taken into account,
and expected shortfall (ES), which is pointed out by Giot and
Laurent (2003) amongst others, is another important part of the
risk management process since it sheds lights on how much a
risk manager can lose on average when the relevant VaR model
fails. Furthermore, it is also calculated in each individual case.
These points are also considered as contributions to the relevant
literature due to the fact that although there are many studies
calculating ES by taking into account different trading positions
(i.e., short and long trading positions based on parametric VaR
models), it is observed that for FHS and HS models in particular,
more studies are needed in order to report on how the two models
perform for short trading positions and what ES values they
produce for alternative trading positions.

The rest of the paper is organised as follows: Section 2 shows
data and methodology, Section 3 provides empirical results, and
Section 4 presents the concluding remarks.

2. DATA AND METHODOLOGY

2.1. Data

The study uses the daily closing spot prices of four important asset
classes, including energy commodities (WTI and NYHCGR),
stock indices (NIKKEI 225 stock market index and TSEC
weighted stock index), foreign exchange rates (EUR/USD and
JPY/USD), and precious metals (gold and copper). Detailed
information about the data is presented in Table 1. The data
for each asset class covers the period from January 04, 2000 to
August 04, 2016, consisting of nearly 4200 observations for each
financial variable. Following the studies using long-memory
GARCH-type models, the data set is divided into two subperiods,
and the last 1000 observations are left out of our sample analysis.
The continuously compounded daily returns (r) of each financial
variable are calculated as follows:
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Table 1: Data explanations and sources

WTI In US dollar per barrel US Energy Information Administration
NYHCGR In US dollar per barrel US Energy Information Administration
NIKKEI 225 Japan stock index, in local currency Finance yahoo

TSEC weighted index ~ Taiwan stock index, in local currency Finance yahoo

EUR/USD Euro into US dollar Bank of England

JPY/USD Japanese yen into US dollar Bank of England

Gold London fixings, London bullion Market association in US dollar per troy ounce  Bank of England

Copper London metal exchange, in US dollar per tonne Quandl

WTI: West intermediate crude oil, NYHCGR: Harbour Conventional Gasoline regular, NIKKEI 225: Japan stock index, TSEC weighted index: Taiwan stock index, EUR/USD: Euro into
US dollar, JPY/USD: Japanese yen into US dollar
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Figure 1: Plots of the return series
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r=100*[In(P)-In(P,_)] (1)
Where P, is the closing price on day #.
The graphs of the return series are presented in Figure 1.

2.2. Methodology

2.2.1. Long-memory GARCH-type VaR models (parametric VaR
models)

In this study, FIGARCH, HYGARCH, and FIAPARCH models
are used as long-memory GARCH-type models. The FIGARCH
(1, d, 1) model is given by:

r=ute, e=oc,c~0,1) 2)

b =w,+ Bh +[1-(=BLY A-oL)1-L)' ]} (3)

Where w,>0,5<1,¢<1,0<d<1, Lis the lag operator, and d is
the fractional integrator parameter. Equation (2) and equation (3)
show the conditional mean and variance equations, respectively.

The HYGARCH (1, d, 1) model can be defined as follows:
b =w, + [1 —(1-BLY LA +a((1-L) - 1)};,2 )

However, the FIGARCH and HY GARCH models do not consider
the asymmetry in volatility. Therefore, the FIAPARCH model, which
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covers both the long-memory and asymmetry in conditional variance,
is also employed. The FIAPARCH (1, d, 1) model is written as:

h =w,(1-BLY +[1-(1-BL) (-9 L)1- L) |(l¢, |-1e,)"’
(5)

Where w,>0,6>0,¢ <1,8<1,-1 <y <1yis the leverage
coefficient, and ¢ is the power term parameter.

However, long-memory GARCH-type VaR models need a pre-
specified distribution assumption. It is not an easy task to decide
which distribution assumption should be preferred to get more
accurate forecasting results. Therefore, in most analyses, two
or three distribution assumptions are used together. Similarly,
following the relevant literature, in this study the FIGARCH,
HYGARCH, and FIAPARCH models are estimated under
Gaussian normal, the student t, and the skewed student t
distribution assumptions.

Assuming a standard normal distribution, VaR is given by:

Va Rdownside market risk =u -z, \/Z (6)

t,long position

upside market risk __ _ [
VaRt,short position M =21 ht (7)

Where 4, is the mean conditional returnand _ /j, is the conditional
standard deviation, both of which are obtained from the relevant
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long-memory GARCH-type models. Further, z_is the left ath-
quantile and z,__ is the right (1 - o))tk quantile of the standard normal

distribution, respectively.

Under the standard normal distribution assumption, the parameters
of FIGARCH, HYGARCH, and FIAPARCH models are estimated
using the log-likelihood function of Gaussian normal distribution
(LogLL, ), whichis given by:

T
LogLL,,, , = —%2[1n(27z)+ In(])+2] | (8)

t=1

. . £ .
Where, o/is the variance, z, = % , and T is the number of
t

observations.

Assuming a student t distribution, the VaR is given by:

downside market risk __ _
VaR = W, — studentt, ,\|h,

t,long position

9
VaRupsidemarket risk — 'ut —Studenttl_a,v\/i

t,short position

(10)

Where student ¢, and student ¢, are the left and right quantiles
of the student t distribution with the v degrees of freedom.

The log-likelihood function of student t distribution (LogLLstudent t)

is written as follows:

v+l \% 1
LOgLLxmdemz = T{lnl" (T) —InT" (Ej —Eln[n (V — 2)]} —
1< 2 ;
5;[ln("’ )+(1+v){ln(1+o_2(i_2))ﬂ

(11)

Where v is the number of degrees of freedom with v>2, and r (.)

is the gamma function.

Assuming the skewed student t distribution, VaR is given by:

VaRt‘f’?o’”,,'gijs'lf’tf;ﬁe’ risk — W, — skwstudentt, Y. h, (12)
VaR" o™ = 1, — skwstudentt, , , . \Jh, (13)

Where skwstudent t .and skwstudent t,_ , .are the left and right
quantiles of skewed student t distribution with the v degrees of

freedom.

The log-likelihood function of skewed student t distribution
(LogLLstudent ) can be defined as follows:

1nr("—”j—1nr(3j—lln[nnnr )]+
2 2) 2
In| —F— [+In(s)

k+(1)
o o]

LogLL

'skwstudent t

t=1

(14)

Where k is the asymmetry parameter, and the value of In (k)
determines the degree of the asymmetry in the distribution of the
relevant financial return series.

2.2.2. Historical simulation (non-parametric VaR model)
Parametric VaR models have some disadvantages. For example,
they need a distribution assumption (a theoretical distribution)
and a model to estimate the time-varying conditional volatilities.
Unfortunately, as commonly reported in the relevant literature,
unsuitable distribution assumptions and model selections may
result in large biases. An alternative approach to parametric VaR
models is to use the HS model, which is one of the most commonly
used models by financial institutions because of its simplicity.
Generally, its simplicity arises from the fact that the HS model
directly uses the empirical distributions of the actual returns and
assumes that the empirical distribution of actual past returns is
stable over time. Therefore, the empirical distribution of past
returns can be used to predict expected future losses (Marimoutou
et al., 2009; Toggins, 2008; Abad et al., 2014).

Under this framework, the HS model can be defined as:
VaRdownside market risk — quantile{{rt }thl } (1 5)

t,a long position

VaR upside market risk — quantlle {{l’; }IT:I } (1 6)

t,1- o short position

Where 7, is the logarithmic historical return, « is the left ath-
quantile, and 1-a is the right (1-a)th-quantile of the relevant
empirical distribution.

However, the HS model also has some disadvantages. For
example, if the sample size is not long enough to capture the
extreme events that occurred in the past, it may underestimate
the actual market risk. Besides, the HS model does not consider
the volatility clustering and time-varying volatility characteristics
of financial return series, so it does not consider the fact that
the risk of the relevant financial variable can change over time
(Barone-Adesi et al., 2002; Degiannakis et al., 2013; Toggins,
2008; Abad et al., 2014)

2.2.3. Filtered historical simulation (semi-parametric VaR
model)

The FHS model was developed by Hull and White (1998) and
Barone-Adesi et al. (1999). The main contribution of the FHS
model is that it adjusts the historical returns in order to reflect the
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Table 3: FIGARCH model estimation results

1t (Mean) 0.05309%* 0.04034 0.00562 0.00676 0.04856* 0.04751* 0.00231 0.04125%
, (Variance) 0.13900**  0.36717* 0.00104 0.01486* 0.06189* 0.05592%*  0.17533**  0.07018*
d (Long memory)  0.42192* 0.35368* 0.87608* 0.36277* 0.61667* 0.39653*  031433*  0.35421*
¢, (ARCH) 0.39326* 0.18549* 0.05812 0.47086* 0.10418%* 0.08947 0.20688 0.29444%
B, (GARCH) 0.67805* 0.43486* 0.94161* 0.73940% 0.64281* 0.44821%  0.42537*  0.55702*
LL —9245.016  —9815.679  —3790.758 ~3950.07 ~7119.94 —6614.48  —7899.735  —6213.65
AIC 4440718  4.714680 1.820944 1.897370 3.487489 3231378 3.811348  2.966914
Q? (20) 16.48 022.67 07.94 20.2 25.18 031.5% 235 8.79
ARCH (20) 0.82298 1.1695 0.40366 0.9975 1.2452 1.4906** 1.1895 0.44674
RBD (20) 16.4535 ~7.30269 6.20187 91.9086* 20.2146 29.7734%*%  —3.13344 8.23419
1t (Mean) 0.06735* 0.06877* 0.00702 0.00956 0.06211* 0.06368* 0.01522 0.04059*
, (Variance) 0.09020* 0.34926* 0.00090%* 0.01884* 0.06528* 0.02997*  0.12319*  0.04982*
d (Long memory)  0.46179% 0.33175* 0.88916* 0.35007* 0.50915* 0.47219%  033615%  0.50249*
¢, (ARCH) 0.37137* 0.21396* 0.04382 0.38408* 0.07611 0.15076*  0.32450*  0.21025*
B, (GARCH) 0.71818* 0.46331% 0.94074* 0.67763* 0.55263* 0.60984*  0.58958*  0.68049*
v (Tail) 7.301945%  8.160908*  9.335456* 5.60065* 8.88828%* 6.90482%  5.82089%  4.20995*
LL 9145989 9754760  —3751.075  —3804.482 ~7068.99 ~6541.257  ~7776.89  —5985.625
AIC 4393658  4.685914 1.802387 1.828008 3.463041 3.196123  3.752601  2.858600
Q*(20) 20.74 33.4% 8.46 19.53 48.8* 41.3% 32.6* 020.4
ARCH (20) 1.0451 1.7029* 0.42707 0.96975 2.4586* 1.8929% 1.6067* 0.98663
RBD (20) 17.7914 ~76.8742 9.38926 24.3533 12.7103 15.0623 15.8009 ~31.7103
1t (Mean) 0.04709 0.04805 0.00415 0.00402 0.04477* 0.04452% 0.00590 0.03724*
, (Variance) 0.08748* 0.34756* 0.00089%* 0.01896* 0.06078* 0.02743%*  0.12084*  0.04994*
d (Long memory)  0.46179% 0.32926* 0.88719* 0.34807* 0.50497* 0.46026*  033891*  0.50217*
¢, (ARCH) 0.36760* 0.21367* 0.04484 0.38605* 0.08220 0.15030*  0.32621*  0.20986*
B, (GARCH) 0.71607* 0.46030* 0.94061* 0.67676* 0.54998* 0.59746*  0.59345%  0.68009*
v (Tail) 7.433535%  8.252045* 9.38432% 5.63525% 9.75957* 7.45199%  5.83322%  4.21305*
¢ (Asymmetry) ~0.05605*%  —0.05614* —0.02818  —0.03469%*  —0.08686*  —0.08752*  —0.02442  —0.08945
LL 9142718 —9751.380  —3750.179 ~3803.14 ~7061.38 —6532.69  —7776206  —5985.518
AIC 4392567  4.684772 1.802436 1.827842 3.459806 3.192430  3.752751  2.859026
Q* (20) 20.93 33.25% 8.39 19.29 45.0% 41.3% 32.5% 20.45
ARCH (20) 1.0525 1.6968* 0.42387 0.95769 2.2720% 1.8900%* 1.5988%* 0.98925
RBD (20) 19.5468 ~54.7680 9.07197 22.5033 12.9171 14.4557 15.2828 ~30.9102

*and ** denote the 5% and 10% significance levels, respectively. LL is the value of maximised log likelihood. AIC is the Akaike (1974) information criterion.
For normal distribution assumption, robust standard errors are estimated with sandwich formula

changing market condition. In other words, it uses a methodology
that is based on combining the main characteristics of GARCH-
type models and the HS model. More specifically, it first estimates
the conditional standard deviations by using GARCH-type models
to generate standardised returns that are considered to be more
appropriate for simulation analysis compared to raw historical
returns used in HS analysis. Then, like the HS model, the quantile
of standardised returns is used for VaR calculation (Marimoutou
etal.,2009; Abad et al., 2014; Louzis et al., 2004; Toggins, 2008)
With such an approach, the FHS model is able to take into account
stylised facts of financial return series such as volatility clustering,
skewness, excess kurtosis, and non-normal distribution (Angelidis
et al., 2007).

Where z, is the standardised historical return’, \/E is the most
recent estimate of the conditional standard deviation by standard
GARCH model, a is the left ath-quantile, and /-a is the right (1-a)
th-quantile of the relevant empirical distribution.

2.2.4. Backtesting procedure

VaR models are only meaningful tools as far as they forecast
future potential losses accurately (Jorion, 2007). Therefore,
evaluating the VaR models’ accuracy, called the backtesting
procedure, is another crucial part of the financial risk
management process. In the VaR calculations of this study,
quantiles ranging from 0.95 to 0.9975 are used for long trading
positions, and those from 0.05 to 0.0025 are used for short
trading positions. Then, in order to determine the most accurate

In this framework, the FHS model can be calculated as:
VaR model, the forecasted one-day-ahead VaR forecasts are

downside market risk .
VaRt,a long pasitiortt = lut + \/E quantlle {{Zt }tT=1 } (17)

1 Following the genearal approach in the relavant literaure, the standard
Va Rzllfiif S'Zi’tw; :550" =u + / ht quantile{ { z, }tT:I } (18) g;:l;gs rrrrll(;):eell under normal distribution assumption is used as a filter for
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Table 4: HYGARCH model estimation results

1 (Mean) 0.05299* 0.03698 0.00562
o, (Variance) 0.11654 0.15585 0.00167
d (Long memory) 0.39796* 0.24405* 0.89898*
¢, (ARCH) 0.40284* 0.14673 0.04099
B, (GARCH) 0.67056* 0.32245* 0.94488*
Log (o) (Hyperbolic) 0.01834 0.14947 —0.00348
LL —9244.85 —9813.55 —3789.73
AIC 04.441118 4.714141 1.820932
Q2 (20) 16.24 20.80 8.37
»,ARCH (20) 0.80767 1.0866 0.42568
RBD (20) 16.8318 13.4096 8.927
1« (Mean) 0.06712* 0.06643** 0.00705
o, (Variance) 0.06082 0.02873 0.00108
d (Long memory) 0.42626* 0.16768* 0.89387*
», (ARCH) 0.38687* 0.15034 0.04031
B, (GARCH) 0.70741* 0.29519* 0.94129*
Log (o) (Hyperbolic) 0.02349 0.319786 —0.00096
v (Tail) 7.18393* 7.818318%* 9.432968*
LL —9145.692 —9751.14 —3751.026
AIC 4.393995 4.684659 1.802843
Q% (20) 19.84 31.6% 8.56
ARCH (20) 0.9961 1.6348* 0.43198
RBD (20) 16.9125 421621 8.60776
1 (Mean) 0.04614 0.04169 0.00423
o, (Variance) 0.05673 —0.00948 0.00105
d (Long memory) 0.42482* 0.15369* 0.89144*
¢, (ARCH) 0.38345%* 0.13733 0.04164
B, (GARCH) 0.70464* 0.27328%** 0.94112*
Log (o) (Hyperbolic) 0.02453 0.37008 —0.00086
v (Tail) 7.306440* 7.88713* 9.46883*
€ (Asymmetry) —0.056693* —0.06249* —0.02794
LL —9142.389 —9747.136 —3750.142
AIC 4.39289 4.683214 1.802898
Q?(20) 19.98 31.7*% 8.48
ARCH (20) 1.0013 1.6383* 0.42825
RBD (20) 19.2023 3.28573 8.45248

0.00705 0.04760%* 0.04736* 0.00260 0.04089*
0.00836 0.08547* 0.04867 0.13879 0.09072*
0.29952* 0.76770%* 0.37156* 0.25359* 0.46949*
0.50999* 0.05431 0.07588 0.15921 0.26879*
0.73907* 0.72716* 0.41646%* 0.33979 0.61738*
0.07515 —0.03006 0.01890 0.08973 —0.07175
—3949.46 —7118.12 —6614.332 —7898.68 —6212.143
1.897558 3.487082 3.231795 3.811322 2.96671
018.15 24.65 31.3* 229 09.05
0.89806 1.2300 1.4865%* 1.1616 0.45998
48.1994* 4.96197 29.8417** 0.13376 7.64968
0.00978 0.06154* 0.06399* 0.01516 0.04074*
0.01324 0.08575* 0.01615 0.12007* 0.01886%**
0.29826* 0.55839%* 0.42627* 0.32788* 0.99026*
0.40898* 0.07267 0.15079* 0.32496* —0.02678
0.66969%* 0.58659* 0.57743%* 0.58444%* 0.92644*
0.06222 —0.02274 0.03049 0.00801 —0.00945
5.570554* 9.09539%* 6.70200%* 5.80608%* 4.27485%*
—3804.27 —7068.72 —6540.728  —7776.884 —5982.67
1.828385 3.463398 3.196353 3.753078 2.857667
18.31 48.7* 40.8%* 32.5% 22.4
0.9109 2.4578* 1.8743* 1.6048* 1.0800
—71.465 12.0259 20.4087 —42.3095 —1.49189
0.00429 0.04448* 0.04422* 0.00581 0.03725%
0.01428 0.08744* 0.01521 0.11773* 0.01886**
0.30401* 0.57744* 0.41963* 0.33086* 0.99072*
0.40724* 0.07646 0.14946* 0.32681%* —0.02741
0.66993* 0.60070%* 0.56763* 0.58859* 0.92656*
0.05178 —0.02981 0.02681 0.00774 —0.00948
5.61025% 10.0944* 7.26867* 5.81809* 4.28036*
—0.03398 —0.08781* —0.08763* —0.02443 —0.00948
—3802.987 —7060.87 —6532.29 —7776.197  —5982.548
1.828250 3.460043 3.19272 3.753229 2.858086
18.28 44.8%* 40.9* 32.4% 22.5
0.90877 2.2582% 1.8733%* 1.5967* 1.0824
95.1525% 12.7240 16.506 75.5377* —1.60108

*and ** denote the 5% and 10% significance levels, respectively. LL is the value of maximised log likelihood. AIC is the Akaike (1974) information criterion.
For normal distribution assumption, robust standard errors are estimated with sandwich formula

compared with the observed returns, which represent the realised
VaR. Both results are recorded for later assessment using the
Kupeic (1995) likelihood ratio unconditional coverage (LRuc)
test, which is defined as follows:

LR, =2%In[(= 7 /M =22 [(-0)™ " ]~ 2, (19)

Where T is the sample size, N is the number of exceptions,
/is the exception rate (N/T), and (1-a) is the confidence level.
Further, H: f= a is the null hypothesis, which is tested against
the alternative H : f# o hypothesis, where refers to the expected
exception rate.

3. RESULTS

Descriptive statistics for the return series are shown in Table 2.
Panel A shows that all return series have a positive average except

for JPY/USD and NIKKEI 225 stock market index, for which
they are negative. Standard deviations reveal that NYHCGR has
the highest volatility, followed by WTI, at 2.8142 and 2.5095,
respectively. However, exchange rate return volatilities are
found to be lowest. Additionally, all series exhibit a statistically
significant negative skewness, except for EUR/USD, meaning
that the left tails are longer than the right tails in nearly all
series. Similarly, in all cases it is shown that return series
exhibit statistically significantly higher kurtosis especially for
copper, NYHCGR, NIKKEI 225 stock market index, and gold,
suggesting that these financial variables’ return series have fat-
tailed distributions. Thus, the Jarque-Bera (JB) test rejects the null
hypothesis of normal distribution for each return series. Engel’s
(1982) ARCH test and the Ljung-Box Q test applied to squared
return series using 12 lags indicate significant ARCH effect
(Panel B). Results from the Augmented Dickey Fuller (ADF) and
Philips Perron (PP) unit root tests, along with the Kwiatkowski,
Philips, Schmidt, and Shin (KPSS) stationary test, show that all
return series are stationary (Panel C). Lo’s (1991) modified R/S
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Table 5: FIAPARCH model estimation results

1t (Mean equation) 0.02333 0.03845 0.00389
o, (Variance equation) 0.1489 0.37852* 0.00320
d (Long memory) 0.41617* 0.36393* 0.90749*
¢, (ARCH) 0.41621%* 0.18815%* 0.03018
S, (GARCH) 0.68866* 0.44634* 0.94712*
y (APARCH asymmetry) 0.26061* 0.01474 0.09378
& (APARCH power) 1.76389* 1.95224%* 1.59673*
LL —9231.28 —9815.57 —3785.67
AIC 4.435084 4.715586 1.819462
Q*(20) 15.60 23.67 8.72
ARCH (20) 0.79673 1.2207 0.44945
RBD (20) 3.77291 9.83139 8.96586
1« (Mean equation) 0.05096** 0.06154** 0.00640
o, (Variance equation) 0.10558* 0.35562* 0.00242
d (Long memory) 0.43212% 0.32801* 0.90677*
¢, (ARCH) 0.38322%* 0.21301* 0.02536
B, (GARCH) 0.70571%* 0.46030%* 0.94322%*
7 (APARCH asymmetry) 0.30698* 0.102123 0.05224
8 (APARCH power) 1.73934%* 1.943041%* 1.73455%*
v (Tail) 7.520536%* 8.06455%* 9.847497*
LL —9135.866  —9753.121 —3749.42
AIC 4.389758 4.686088 1.802553
Q2 (20) 19.38 43.30* 9.09
ARCH (20) 0.9880 2.1964* 0.46113
RBD (20) -16.974 5.63923 6.96243
1t (Mean equation) 0.02739 0.03826 0.00376
o, (Variance equation) 0.10961* 0.35194* 0.00243
d (Long memory) 0.43163 0.31980* 0.90508*
¢, (ARCH) 0.38022* 0.21042%* 0.02539
f, (GARCH) 0.70332* 0.45016* 0.94308*
7 (APARCH asymmetry) 0.33005%* 0.11568 0.04985
& (APARCH power) 1.722632%* 1.96442%* 1.73466*
v (Tail) 7.722091%* 8.12521* 9.89318%*
€ (Asymmetry) —0.06595*  —0.06019* —0.02724
LL —9131.366  —9749.287 —3748.560
AIC 4.388078 4.684727 1.802622
Q% (20) 19.40 44.18* 9.07
ARCH (20) 0.98810 2.2425% 0.46017
RBD (20) —28.7996 5.93796 6.55677

0.00452 0.00396 0.01916  —0.00339  0.04628*
0.00764* 0.13610% 0.07254%  0.17498%%  0.07664*
0.98837* 0.53869* 030324*  027015%  0.40696*
0.03479 0.14816* 0.21286*  0.12901  0.28828*
0.94641% 0.59930* 0.46686* 031065  0.60410%
021156%%  0.47805* 0.66009%*  0.05370  —0.06004
1.18291% 1.12911% 1.53540%  2.14963*  1.85316%
~3933.37 ~7076.32  —6561.028  —7897.68  —6211.723
1.890318 3.467119 3206262 3.811322  2.966948
12.61 34.36* 29.2% 202 9.29
0.65725 1.6924% 1.5251%* 1.0234 0.46993
9.48236 15.2966 89.2465%*  —33.4305  7.81147
0.00908 0.02645 0.04271*  0.00894  0.04239*
0.00626%*  0.17214* 0.04130  0.13188%  0.01838*
0.99683* 0.41473* 0.26984*  0.41123*  0.98723*
0.00320 0.12842% 0.20334%  0.30677%  —0.04661
0.95085* 0.47681* 0.44300%*  0.64912%  0.94080*
0.08893 0.63636*  0.74328%*  0.17277*  —0.3755%*
1.30753* 1.15561* 1.56984*  1.68289*  0.93838
5.68938*  10.09554%  7.99976*  5.92356*  4.33618%
-3796.039  -7029.39  —6506374 777191  —5965.132
1.824917 3.444637 3.180070  3.751162  2.849777
12.81 43.14% 28.7%% 38.2% 92.6*
0.65471 2.0896* 1.4512%%  1.8599% 4.4612%
5.57060 ~18.1191 90.728* 8.1598 5.26566
0.00429 0.00852 0.02378  —0.00112  0.03739*
0.00647%%  0.17869%  0.04754%*  0.13150%*  0.01816*
0.99322% 0.42160* 0.28260*  0.41412%  0.98850*
0.00695 0.12908* 0.19006*  0.30757%  —0.04748
0.94956* 0.48236* 0.44715%  0.65196%  0.94123*
0.08833 0.63071% 0.68065%  0.17408%  —0.3711%*
1.30469* 1.12900* 1.59948%  1.68347*  0.94017
S71178%  10.99446%  8.68245%  5.93044%  433952%
-0.03029  —0.09526*  —0.09350*  —0.02662  —0.01283
~3795.02 ~7020.13 ~6496.74  —7771.088  —5964.915
1.824908 3.440593 3.175856  3.751248  2.850150
12.79 43.59% 28.7%* 37.7% 92.2%
0.65296 2.1113% 1.4339%%  1.8343* 4.4457%
5.16328 ~26.8628 48.1139* 8.2365 5.14928

*and ** denote the 5% and 10% significance levels, respectively. LL is the value of maximised log likelihood. AIC is the Akaike (1974) information criterion.
For normal distribution assumption, robust standard errors are estimated with sandwich formula

test statistics analyses the long memory properties of the return
and volatility series, indicating that all the series exhibit long
memory properties in their volatility but short memory properties
in their return (Panel D).

The estimation results of the FIGARCH model under standard
normal, student, and skewed student t distribution assumptions,
shown in Table 3, indicate that ARCH and GARCH parameters are
positive and statistically significant in all cases except for EUR/
USD, TSEC weighted stock index, and copper, where ARCH
parameters are found to be insignificant. Fractional difference
parameters d, taking values ranging from 0.3143 to 0.8892, are
significant at the 5% significance level in all cases and generally
highest for EUR/USD (nearly 0.88) and lowest for NYHCGR,
copper, and JPY/USD, meaning that a shock to volatility will last

longest for EUR/USD to decay and lowest for NYHCGR, copper,
and JPY/USD.

The HY GARCH model results, presented in Table 4, reveal that
GARCH parameters are positive and statistically significant in
all cases at conventional significance levels, with the exception
of copper when the HY GARCH model under normal distribution
assumption is employed. In contrast, ARCH parameters are found
to be statistically insignificant in most cases. Fractional difference
parameters d are found to be positive and significant in all cases,
and range from 0.1536 to 0.9907, and are generally highest for
EUR/USD and gold, and lowest for NYHCGR. Besides, it is found
that hyperbolic parameters Log(a) are not statistically significant
at conventional significance levels in all cases, implying that
GARCH components are covariance stationary.
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Table 6: Long-memory GARCH-type Var model performance based on LRuc statistics for downside market risk

0.0500 0.77024 0.56645 0.54176 0.31529 0.10025 0.98830 0.48281 0.58652
0.0250 0.24114 0.24114 0.31319 0.31319 0.00409* 0.47714 0.41422 0.24696
0.0100 0.13898 0.00231* 0.13446 0.01040* 0.00196* 0.00399* 0.22405 0.02311*
0.0050 0.04863* 8.96E—05* 0.21174 0.10442 0.00026* 491E-06* 0.39129 0.00294*
0.0025 0.06071** 0.00148* 0.16120 0.01923* 4.04E-07* 3.6E-06* 0.16120 0.00152*

'FIGARCH model with student t distribution assumption
0.0500 0.47493 0.39263 0.45237 0.97101 0.02894* 0.24632 0.54176 0.68771
0.0250 0.32594 0.32594 0.82059 0.53378 0.00701* 0.47714 0.53378 0.56480
0.0100 0.36211 0.02226* 0.75834 0.75834 0.00956* 0.01805* 0.75834 0.76427
0.0050 0.66386 0.10712 0.64999 0.65547 0.10019 0.00076* 0.64999 0.63604
0.0025 0.38261 0.38261 0.37793 0.37793 0.37047 0.01758* 0.28257 0.76390

' FIGARCH model skewed student t distribution assumption
0.0500 1.00000 0.56645 0.63979 0.68652 0.10025 0.65243 0.97101 0.68771
0.0250 0.84050 0.42927 0.82059 0.53378 0.04743* 0.47714 0.67032 0.85646
0.0100 0.31356 0.02226* 0.52007 0.52007 0.03856* 0.01805%* 0.32083 0.76427
0.0050 1.00000 0.21625 0.64999 0.99104 0.38079 0.00661* 0.64999 0.32841
0.0025 0.38261 0.38261 0.75271 0.37793 0.37047 0.05522%* 0.28257 0.76390

' FIAPARCH model with standard normal distribution assumption
0.0500 0.77024 0.47493 0.54176 0.79796 0.17097 0.30003 0.48281 0.49336
0.0250 0.68916 0.12215 0.16560 0.23072 0.00409* 0.92635 0.41422 0.03836*
0.0100 0.04311* 0.00041* 0.13446 0.02124* 6.33E-06* 0.01805%* 0.22405 0.00538*
0.0050 0.39791 0.00030* 0.21174 0.00757* 3.28E-07* 0.00076* 0.21174 0.00099*
0.0025 0.06071** 7.55E-05* 0.05943** 0.00034* 0.001352* 1.19E-05* 0.16120 0.00153*

'FIAPARCH model with student t distribution assumption
0.0500 0.77305 0.25710 0.37240 0.79796 0.10025 0.87223 0.79796 0.21446
0.0250 0.83844 0.08366** 0.67032 0.31319 0.00701%* 0.91063 0.67032 0.05868**
0.0100 0.53773 0.01096* 0.75834 0.98730 0.00013* 0.06712%* 0.32083 0.23585
0.0050 1.00000 0.10712 0.65547 0.99104 0.04494%* 0.00661%* 0.33772 0.63604
0.0025 0.38261 0.06071** 0.37793 0.37793 0.37047 0.01758* 0.28257 0.76390

' FIAPARCH model skewed student t distribution assumption
0.0500 0.46085 0.56645 0.63979 0.48281 0.21843 0.37772 0.48281 0.21446
0.0250 0.68141 0.17385 0.67032 0.53378 0.03051* 0.92635 0.85817 0.08756**
0.0100 0.31356 0.13898 0.52007 0.98730 0.00196* 0.20274 0.32083 0.36916
0.0050 0.64222 0.21625 0.64999 0.99104 0.64208 0.00661* 0.33772 0.63604
0.0025 0.75893 0.06071** 0.75271 0.37793 0.75793 0.01758* 0.00000* 0.76390

'HYGARCH model with standard normal distribution assumption
0.0500 1.00000 0.15895 0.54176 0.31529 0.07510%* 0.75956 0.48281 0.58652
0.0250 0.24114 0.03638* 0.23072 0.23072 0.00071* 0.36508 0.31319 0.08756**
0.0100 0.07943** 6.19E-05* 0.13446 0.01040%* 5.01E-05* 0.00399%* 0.13446 0.00538*
0.0050 0.00788* 2.51E-05* 0.39129 0.10442 0.00026* 4.9E-06* 0.10442 0.00099*
0.0025 0.01974* 7.54E-05* 0.16120 0.01923* 1.32E-05* 5.7E—08* 0.16120 0.00152*

'HYGARCH model with student t distribution assumption
0.0500 0.39263 0.02657* 0.45237 0.85628 0.02046* 0.15063 0.54176 0.49336
0.0250 0.32594 0.02312* 0.67032 0.53378 0.00409* 0.36508 0.53378 0.44150
0.0100 0.53773 0.00041* 0.98730 0.75834 0.00444* 0.00869* 0.75834 0.54642
0.0050 0.66386 0.00788* 0.99104 0.65547 0.04494* 0.00076* 0.64999 0.63604
0.0025 0.38261 0.06071** 0.37793 0.37793 0.37047 0.00497* 0.28257 0.76390

'HYGARCH model skewed student t distribution assumption
0.0500 0.88427 0.06933%* 0.85628 0.58082 0.10025 0.55261 0.97101 0.58652
0.0250 0.84050 0.03638%* 0.97977 0.53378 0.04743%* 0.47714 0.67032 0.70432
0.0100 0.51016 0.00231* 0.52007 0.52007 0.03859* 0.01805* 0.32083 0.76427
0.0050 1.00000 0.02034* 0.64999 0.99104 0.64208 0.00076%* 0.64999 0.63604
0.0025 0.38261 0.16391 0.75271 0.37793 0.37047 0.01758* 0.28257 0.76390

* and ** denote the 5% and 10% significance level, respectively. The figures are the probability values of the Kupeic (1995) test

As with the previous two models, the FIAPARCH model
estimation results (Table 5) also indicate that fractional difference
parameters d, ranging from 0.2698 to 0.9968, are positive and
significant at the 5% significance level for each return series.
Besides, the power term, ¢ with a value that ranges from 0.9384 to

2.1496, is found to be significant at the 10% or better significance
level in all cases, with the exception of gold, for which it is found
to be statistically insignificant under student and skewed student
t distribution assumptions. For asymmetry parameters, y is found
to be positive in all cases except for gold, for which it is negative.
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Table 7: Long-memory GARCH-type VaR model performance based on LRuc statistics for upside market risk

0.9500 0.23316 0.00311* 0.14259 0.39396 0.42639 0.00046* 0.48281 0.28652
0.9750 0.13588 0.20474 0.69983 0.41422 0.57860 0.00473* 0.53378 0.56480
0.9900 0.31356 0.53773 0.35339 0.22405 0.53619 0.03506* 0.74218 0.01141*
0.9950 1.00000 0.66386 0.21174 0.00272* 0.64208 0.13691 0.65547 0.67059
0.9975 0.75893 0.06071** 0.16120 0.00034* 0.74274 0.76853 0.74860 0.16611
'FIGARCH model with student t distribution assumption
0.9500 0.55655 0.00529* 0.10468 0.91292 0.95919 0.00164* 0.97101 0.97688
0.9750 0.01524* 0.08572%* 0.55164 0.67032 0.15310 0.00204* 0.21352 0.70432
0.9900 0.07859** 0.51016 0.52007 0.35339 0.33275 0.01068* 0.03113* 0.16601
0.9950 0.02851* 0.66386 0.99104 0.65547 0.34619 0.13691 0.02918* 0.32841
0.9975 0.27947 0.75893 0.28257 0.75271 0.75793 0.76853 0.28257 0.00000*
'FIGARCH model with skewed student t distribution assumption
0.9500 1.00000 0.04842%* 0.39396 0.85628 0.41740 0.09659** 0.97101 0.79548
0.9750 0.13588 0.20474 0.69983 0.41422 0.89005 0.01012* 0.55164 0.70432
0.9900 0.16963 0.53773 0.98730 0.35339 0.77754 0.03506%* 0.03113* 0.16601
0.9950 0.12578 0.66386 0.39129 0.39129 0.64208 0.13691 0.12823 0.63604
0.9975 0.27947 0.16391 0.75271 0.37793 0.75793 0.76853 0.28257 0.00000%*
'FIAPARCH model with standard normal distribution assumption
0.9500 0.23316 0.00311* 0.24726 0.74519 0.92453 429E-06* 0.58082 0.35952
0.9750 0.20474 0.20474 0.85817 0.41422 0.72982 9.14E-05* 0.31319 0.44150
0.9900 0.51016 0.53773 0.35339 0.00486* 0.77754 0.08999** 0.74218 0.01141*
0.9950 0.64222 0.39791 0.21174 0.00091* 0.64208 0.13691 0.99104 0.40324
0.9975 0.74281 0.06071** 0.01923* 0.00034* 0.05742%* 0.76853 0.74860 0.16611
'FIAPARCH model with student t distribution assumption
0.9500 0.23316 0.03286** 0.24726 0.63979 0.59817 0.00089* 0.48281 0.58652
0.9750 0.01524* 0.20474 0.69983 0.53378 0.44213 9.14E-05* 0.09015%* 0.33634
0.9900 0.07859** 0.74647 0.52007 0.35339 0.33275 0.00232* 0.03113* 0.50233
0.9950 0.02851* 0.66386 0.65547 0.39129 0.64208 0.13691 0.02918* 0.99286
0.9975 0.27947 0.16391 0.74860 0.37793 0.15690 0.29338 0.28257 0.27701
' FIAPARCH model with skewed student t distribution assumption
0.9500 0.66029 0.17827 0.48281 0.54176 0.13188 0.00830%* 0.68652 0.49336
0.9750 0.40496 0.40496 0.85817 0.31319 0.89005 0.00080* 0.41899 0.33634
0.9900 0.31356 0.75444 0.52007 0.35339 0.77754 0.03506* 0.03113* 0.50233
0.9950 0.02851* 0.66386 0.39129 0.21174 0.64208 0.13691 0.02918* 0.99286
0.9975 0.27947 0.16391 0.75271 0.37793 0.05742%* 0.76853 0.28257 0.27701
'HYGARCH model with standard normal distribution assumption
0.9500 0.29854 0.04842%* 0.07504** 0.48281 0.62084 0.00046* 0.58082 0.35952
0.9750 0.20474 0.20474 0.85817 0.41422 0.57860 0.01012* 0.31319 0.56480
0.9900 0.31356 0.53773 0.74218 0.22405 0.53619 0.03506* 0.74218 0.01141%*
0.9950 1.00000 0.39791 0.21174 0.00272* 0.64208 0.13691 0.39129 0.67059
0.9975 0.74281 0.06071** 0.05943** 0.00143* 0.74274 0.76853 0.74860 0.06174%*
'HYGARCH model with student t distribution assumption
0.9500 0.46085 0.29854 0.10468 0.91292 0.81054 0.00498* 0.97101 0.68771
0.9750 0.01524* 0.20474 0.55164 0.67032 0.22820 0.00473* 0.21352 0.56480
0.9900 0.07859** 0.75444 0.52007 0.35339 0.33275 0.01068* 0.03113* 0.16601
0.9950 0.02851* 0.66386 0.99104 0.39129 0.34619 0.13691 0.02918* 0.63604
0.9975 0.27947 0.16391 0.28257 0.75271 0.75793 0.76853 0.28257 0.00000*
'HYGARCH model with skewed student t distribution assumption
0.9500 0.88427 0.55655 0.31529 0.74519 0.50324 0.30003 0.97101 0.68771
0.9750 0.13588 0.29430 0.69983 0.41422 0.94728 0.01012* 0.97977 0.44150
0.9900 0.16963 0.36211 0.75834 0.35339 0.77754 0.03506* 0.08106** 0.16601
0.9950 0.12578 0.66386 0.65547 0.39129 0.64208 0.13691 0.12823 0.63604
0.9975 0.27947 0.06071** 0.75271 0.37793 0.75793 0.76853 0.28257 0.00000%*

* and ** denote the 5% and 10% significance level, respectively. The figures are the probability values of the Kupeic (1995) test

However, it is generally statistically significant at conventional
significance levels for WTI, NIKKEI 225 stock market index,

TSEC weighted stock index, copper, and gold only, meaning that

negative shocks have more impact on conditional volatility than
positive shocks of equal magnitude for those financial variables.
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The only exception is gold, for which the opposite linkage is
identified.

As for student t and skewed student t distribution assumptions,
estimated tail parameters are statistically significant in all cases at

I
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Table 8: FHS and HS models’ VaR performances based on LRuc statistics for upside and downside market risk

Buberkoku: Do Long-memory GARCH-type-VaR Models Outperform None-and Semi-parametric VaR Models?

FHS

0.0500 0.2985 0.8850 0.7980 0.4828 0.4174 0.0475% 0.9129 0.7955
0.0250 1.0000 0.8384 0.6998 0.5338 0.1530 0.6098 0.5516 0.8565
0.0100 0.7465 0.2306 0.9873 0.7583 0.0096* 0.2027 0.5201 0.9899
0.0050 0.6422 1.0000 0.3913 0.6500 0.0186* 0.6769 0.1282 0.6360
0.0025 0.7589 0.3826 0.3779 0.7486 0.7579 0.7685 0.0000* 0.7639

HS
0.0500 0.5665 0.0217* 0.0750%* 0.6865 0.7011 0.0000* 0.0000* 0.0654%*
0.0250 0.4293 0.0512%* 0.0902** 0.8582 0.5068 0.0000* 0.0000* 0.0490*
0.0100 0.1696 0.3136 0.0811** 0.5269 0.3328 0.0003* 0.0000* 0.0019*
0.0050 0.1258 0.3325 0.0292* 0.6555 0.3462 0.0316* 0.0000* 0.1238
0.0025 0.2795 0.7428 0.2826 0.7486 0.7579 0.0000* 0.0000* 0.7382
0.9500 0.6603 0.0031* 0.2473 0.1481 0.1710 0.0134* 0.6865 0.8615
0.9750 0.1359 0.0857** 0.8582 0.2307 0.6405 0.0020* 0.8582 0.3363
0.9900 0.3136 0.7465 0.2240 0.2240 0.7226 0.0351* 0.5201 0.0018*
0.9950 0.6422 0.3979 0.3913 0.0196* 0.3808 0.3559 0.3377 0.6706
0.9975 0.2795 0.7428 0.7486 0.1612 0.1569 0.7685 0.2826 0.1662
HS

0.9500 0.6663 0.0140* 0.1047 0.5408 0.5032 0.0000* 0.0000* 0.0202*
0.9750 0.2411 0.2943 0.9798 0.8582 0.7298 0.0000* 0.0000* 0.0275*
0.9900 0.7544 1.0000 0.3208 0.7422 0.5362 0.0023* 0.0003* 0.3078
0.9950 1.0000 0.6639 0.3377 0.9910 0.9766 0.0000* 0.0292%* 0.6360
0.9975 0.7428 0.7428 0.2826 0.7527 0.7427 0.0000* 0.0000%* 0.2770

* and ** denote the 5% and 10% significance level, respectively. The figures are the probability values of the Kupeic (1995) test

the 5% significance level, indicating that the fat-tail phenomenon is
valid for all the relevant financial variable return series. Additionally,
asymmetric parameters are found to be negative in all cases. In
particular, it is statistically significant for only WTI, NYHCGR,
NIKKEI 225 stock market index, and TSEC weighted stock index.
Concerning diagnostic checks, Engel’s (1982) ARCH test, Tse’s
(2002) residual-based diagnostics (RBD) test, and the Ljung-Box
Q test, all of which have the null hypothesis of “no ARCH effect”,
are used to analyse whether or not the ARCH effect is eliminated.
Results show that in most cases, the models are not capable of
capturing the ARCH effect, especially for the NIKKEI 225 stock
market index, TSEC weighted stock index, copper, and NYHCGR
under student t and skewed student t distribution assumptions.

3.1. Evaluating out-of-sample market risk forecasting
performances of alternative models

In this subsection, under the normal, student t and skewed
student t distribution assumptions, the FIGARCH, FIAPARCH,
and HYGARCH models’ out-of-sample one-day-ahead VaR
performances are compared with the FHS and HS models’
performances for each of the financial variables. VaR results
are presented in Tables 6-8, whereas ES values are reported in
Tables 9-11 for each model. Additionally, as an example, graphs
of the out-of-sample VaR forecasts of the FHS and HS models
together with observed returns (which represent the realised VaR)
are presented in Figures 2 and 3, respectively.

First, it is concentrated on long-memory GARCH-type model
performances only. Based on the LRuc test statistic, results indicate

International Journal of Energy Economics and Policy | Vi

that at the 10% or better significance level for downside risk, the
FIGARCH model with skewed student t distribution assumption
is the most appropriate model since it has fewer rejections (6) out
of a total of 40 cases. This is followed by the FIGARCH model
with student t distribution assumption and the FTAPARCH model
with skewed student t distribution assumption, both of which have
seven rejections. The worst performing models are the HY GARCH
model with normal distribution assumption, because it has the
highest rejections (21), followed by the FIAPARCH model with
standard normal distribution assumption with 20 rejections.
Additionally, among the alternative distribution assumptions,
the standard normal distribution assumption is found to be the
worst one in all cases, whereas the skewed student t distribution
assumption is the most appropriate model, followed by the student
t distribution assumption.

For upside market risk, however, the findings reveal that the
most appropriate model is the HY GARCH with skewed student
t distribution assumption, since it only has five rejections. This
is followed by the FIGARCH model with skewed student t
distribution assumption with six rejections. In contrast, the
FIAPARCH and HYGARCH models with standard normal
distribution assumptions are found to be the worst models due
to the fact that each of them has 11 rejections, followed by the
FIAPARCH model with student t distribution assumption with 10
rejections. Besides, the skewed student t distribution assumption
is found to be the most appropriate distribution without any
exception, although it is observed that both standard normal and
student t distribution assumptions perform poorly.




Table 9: Long-memory GARCH-type model ES values for long trading position (%)

Buberkoku: Do Long-memory GARCH-type-VaR Models Outperform None-and Semi-parametric VaR Models?

0.0500 —4.6353 —5.4568 —1.1755 —1.5025 —3.0864
0.0250 —5.1870 —6.4403 —1.2931 —1.6662 —3.4760 —2.2263 —2.9912 —2.5922
0.0100 —5.2096 —7.4875 —1.3773 —1.9232 —3.8469 —2.4086 —3.3666 -3.0013
0.0050 —5.7584 —8.1627 —1.5696 —2.3698 —3.9054 —2.4950 —3.5538 —3.3002
0.0025 —6.4485 —10.161 —1.6187 —2.5138 —3.7876 —2.5930 —3.7154 —3.7275
'FIGARCH model with student t distribution assumption
0.0500 —4.4888 —5.3931 —1.1798 —1.4632 —3.0786 —1.7650 —2.6669 —2.3367
0.0250 —5.1981 —6.4900 —1.3302 —-1.7109 —3.4750 —2.2263 —3.0079 —2.6479
0.0100 —5.2219 —8.0134 —1.5449 —2.3698 —4.0334 —2.4950 —3.5790 —3.4140
0.0050 —6.4485 —-10.161 —1.6999 —2.6039 —4.2759 —2.5727 —3.8724 —5.3330
0.0025 —7.6078 —13.816 —1.6999 —2.7617 —5.8978 —2.7464 —4.8174 —6.2703
'FIGARCH model with skewed student t distribution assumption
0.0500 —4.5464 —5.4568 —-1.1816 —1.4874 —3.1415 —1.7970 —2.7018 —2.3367
0.0250 —5.3108 —6.5870 —1.3298 —1.7109 —3.4557 —2.2263 —3.0329 —2.6837
0.0100 —5.9752 —8.0134 —1.5696 —2.4102 —3.8710 —2.4950 —3.6277 —3.4140
0.0050 —7.0443 —10.722 —1.6999 —2.6343 —4.6093 —2.6698 —3.8724 —6.2703
0.0025 —7.6078 —13.816 —1.6741 —2.7617 —5.8978 —2.7934 —4.8174 —6.2703
' FIAPARCH model with standard normal distribution assumption
0.0500 —4.7810 —5.4077 —1.1857 —1.4615 —3.1877 -1.9702 —2.7604 —2.3467
0.0250 —5.3705 —6.1480 —1.3095 —1.6633 —3.4582 —2.2934 —2.9912 —2.6064
0.0100 —5.5972 —7.0749 —1.4822 —1.9559 —3.6069 —2.4470 —3.3666 —2.9292
0.0050 —5.5972 —8.3795 —1.5696 —2.1029 —3.7880 —2.5221 —3.4687 —3.2240
0.0025 —6.4485 —9.0861 —1.6528 —2.2697 —4.2653 —2.6158 —3.7154 —3.7275
'FIAPARCH model with student t distribution assumption
0.0500 —4.7017 —5.2468 —1.1767 —1.4550 —-3.1501 —1.8346 —2.7343 —2.2913
0.0250 —5.4567 —6.0975 —1.3246 —1.6651 —3.5001 —2.2496 —2.9991 —2.6554
0.0100 —5.9729 —7.6326 —1.5449 —2.2560 —3.6856 —2.5265 -3.6277 —3.3401
0.0050 —7.0443 —10.161 —1.6528 —2.6040 —4.1389 —2.6158 —4.0177 —-5.3330
0.0025 —7.6078 —11.477 —1.6999 —2.7617 —5.8718 —2.7782 —4.8174 —6.2703
' FIAPARCH model with skewed student t distribution assumption
0.0500 —4.8727 —5.4258 -1.1917 —1.4853 —3.2016 —1.9543 —2.7861 —2.2913
0.0250 —5.5416 —6.2252 —1.3246 —1.7030 —3.5101 —2.2934 —3.0865 —2.6879
0.0100 —6.8203 —8.4828 —1.5696 —2.2560 —3.7828 —2.5221 —3.6277 —3.4271
0.0050 —7.6078 —10.433 —1.6999 —2.6040 —4.8727 —2.6158 —4.0177 —5.3330
0.0025 —8.4171 —11.477 —1.6741 —2.7617 —7.9251 —2.7782 na —6.2703
'HYGARCH model with standard normal distribution assumption
0.0500 —4.5366 —5.1864 —1.1861 —1.5025 —3.0876 —1.8252 —2.7604 —2.3517
0.0250 —5.1870 —5.9329 —1.3248 —1.6485 —3.4404 —2.1970 —2.9695 —2.5985
0.0100 —5.0138 —6.7645 —1.4822 —1.9232 —3.7094 —2.4086 —3.2804 —2.9398
0.0050 —5.3155 —7.6482 —1.6206 —2.3698 —3.9054 —2.4950 —3.4888 —3.2685
0.0025 —5.9752 —9.0861 —1.7247 —2.5138 —4.0151 —2.5564 —3.7154 —3.7275
'HYGARCH model with student t distribution assumption
0.0500 —4.4426 —4.9699 —1.1798 —1.4504 -3.0731 —1.7247 —2.6669 —2.3381
0.0250 —5.1981 —5.8613 —1.3216 —-1.7109 —3.4902 —2.1911 —-3.0079 —2.6295
0.0100 —5.3155 —6.9355 —1.5007 —2.3698 —4.0005 —2.4373 —3.5790 -3.3135
0.0050 —6.4485 —8.6122 —1.7247 —2.6039 —4.2095 —2.5727 —3.8724 —5.3330
0.0025 —7.6078 —11.477 —1.6999 —2.7617 —5.8978 —2.7790 —4.8174 —6.2703
'HYGARCH model with skewed student t distribution assumption
0.0500 —4.5427 —5.0453 —1.1945 —1.4945 —-3.1160 —1.7629 —2.7018 —2.3520
0.0250 —5.3108 —5.9092 —1.3358 —-1.7109 —3.4557 —2.2263 —-3.0329 —2.7158
0.0100 —5.7290 —7.1047 —1.5696 —2.4102 -3.8710 —2.4950 —3.6277 —3.4140
0.0050 —7.0443 —9.0861 —1.6999 —2.6343 —4.8906 —2.5727 —3.8724 —5.3330
0.0025 —7.6078 —11.868 —1.6741 —2.7617 —5.8978 —2.7464 —4.8174 —6.2703

“na” denotes that there is no exception, Which also indicates that the relevant model measures the real VaR more than it should

Turning to the FHS and HS models’ one-day ahead out-of-sample
forecasting VaR performances, the results show that the FHS model
produces only four rejections whereas the HS model produces 19
rejections for downside market risk at the 10% or better significance
level. For upside market risk, the findings indicate that the FHS
model has seven rejections while the HS model has 13 rejections.
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In this framework and taking all these findings together, the results
show that among the alternative models examined in this study, the
most appropriate model for downside market risk is the FHS model,
to which the relevant literature has paid more attention. However,
for upside market risk the HY GARCH model with skewed student
t distribution assumption is the most appropriate.
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Table 10: Long-memory GARCH-type model ES values for short trading position (%)

0.9500 4.8347 6.2991 1.3123 1.4549 2.9728 1.8310 2.7814 2.4095
0.9750 6.1740 6.9283 1.4532 1.3814 3.4450 2.2968 3.0978 2.6337
0.9900 8.8210 7.9621 1.6140 1.4242 4.7778 2.7616 3.6889 2.9208
0.9950 8.6088 9.2207 1.8263 1.3159 4.8245 2.8202 4.2101 3.7036
0.9975 8.9075 9.2207 1.8694 1.2882 5.2092 2.8202 4.6716 3.9293
'FIGARCH model with student t distribution assumption
0.9500 4.8964 6.2367 1.3305 1.4117 2.9747 1.7715 2.7366 2.2460
0.9750 7.1119 7.3047 1.4817 1.7042 3.6048 2.3060 3.4542 2.7556
0.9900 8.6088 8.4185 1.8263 2.0180 5.1226 3.0527 4.5094 3.7036
0.9950 9.8140 9.2207 1.9606 2.6034 5.2092 2.8202 6.5152 42134
0.9975 9.8140 12.550 3.0643 2.8770 6.0693 2.8202 6.5152 na
'FIGARCH model skewed student t distribution assumption
0.9500 4.8694 5.8800 1.2730 1.3923 2.8726 1.7264 2.7366 2.2333
0.9750 6.1740 6.9283 1.4774 1.6728 3.3517 22126 3.3491 2.7556
0.9900 9.0555 7.9621 1.6692 2.0180 4.5086 2.7648 4.5094 3.7036
0.9950 8.9021 9.2207 1.8666 24414 4.8245 2.8202 4.6716 4.2092
0.9975 9.8140 9.9901 2.2519 2.6668 6.0693 2.8202 6.5152 na
'FIAPARCH model with standard normal distribution assumption
0.9500 4.9418 6.0082 1.2993 1.4437 2.8936 1.8339 2.7645 2.3862
0.9750 6.0916 6.9283 1.4791 1.4478 3.4572 2.3519 3.0377 2.6867
0.9900 8.7535 7.9621 1.6737 1.3529 4.1224 2.6252 3.6889 2.9208
0.9950 8.2068 8.7488 1.8263 1.3409 4.0791 2.8202 4.2518 3.6672
0.9975 8.9021 9.2207 1.8666 1.3492 4.0791 2.8202 4.6716 3.9293
'FIAPARCH model with student t distribution assumption
0.9500 5.1390 5.8311 1.3102 1.3768 2.8693 1.7953 2.7870 22518
0.9750 6.8249 6.9283 1.4774 1.6979 3.5337 2.3230 3.5275 2.6505
0.9900 8.2216 8.4012 1.8263 2.0281 3.9092 2.8202 4.5094 3.7300
0.9950 9.8140 9.2207 1.9594 2.4688 4.0791 2.8202 6.5152 4.2012
0.9975 9.8140 9.9901 2.6085 2.6668 4.3391 3.0525 6.5152 4.8387
'FIAPARCH model with student t distribution assumption
0.9500 4.9253 5.4768 1.2958 1.3661 3.7715 1.7327 2.7646 2.2428
0.9750 6.0577 6.7437 1.4791 1.6735 3.4256 2.1808 3.2727 2.6505
0.9900 8.5444 7.9583 1.8263 2.0281 4.1224 2.7616 4.5094 3.7300
0.9950 9.8140 9.2207 1.8666 2.3844 4.0791 2.8202 6.5152 42012
0.9975 9.8140 9.9901 2.2519 2.6668 4.0791 2.8202 6.5152 4.8387
'HYGARCH model with standard normal distribution assumption
0.9500 4.7666 5.6902 1.3402 1.4494 2.9776 1.8310 2.7738 2.3947
0.9750 5.9647 6.9283 1.2776 1.6859 3.4790 22126 3.0377 2.6337
0.9900 8.8210 7.9621 1.2588 1.9752 4.7778 2.7616 3.6889 2.9208
0.9950 8.6088 8.7488 1.2151 2.0180 4.8245 2.8202 3.9703 3.7036
0.9975 8.9021 9.2207 1.1613 2.2462 5.2092 2.8202 4.6716 3.7036
'HYGARCH model with student t distribution assumption
0.9500 4.9075 5.3443 1.3305 1.4117 2.9474 1.7386 2.7366 2.2319
0.9750 6.7319 6.9283 1.4817 1.7042 3.6371 2.2141 3.4542 2.7204
0.9900 8.6088 7.9583 1.8263 2.0180 5.1226 3.0527 4.5094 3.7036
0.9950 9.8140 9.2207 1.9606 2.4414 5.2092 2.8202 6.5152 4.2092
0.9975 9.8140 9.9901 3.0643 2.8770 6.0693 2.8202 6.5152 na
'HYGARCH model with skewed student t distribution assumption
0.9500 4.8537 5.2583 1.2846 1.3868 2.9001 1.6548 2.7366 22319
0.9750 6.1740 6.8210 1.4774 1.6728 3.3206 2.2126 3.1759 2.6983
0.9900 9.0555 7.5509 1.7720 2.0180 4.5086 2.7648 42518 3.7036
0.9950 8.9021 9.2207 1.9594 2.4414 4.8245 2.8202 4.6716 4.2092
0.9975 9.8140 9.2207 2.2519 2.6668 6.0693 2.8202 6.5152 na

“na” denotes that there is no exception, Which also indicates that the relevant model measures the real VaR more than it should

4. CONCLUSION the market losses. As a result, new models have become the focus of

close attention, with the goal of improving the VaR performances.

Since the 2007-2008 global financial crisis, traditional methods In this regard, and in terms of market risk measurement, long-

commonly used to measure market risk have become the subjectof ~ memory GARCH-type models have primarily emerged as a better
criticism, in large part because of their inability to meet accurately ~ choice than short-memory GARCH-type models.
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Figure 2: Out-of-sample value-at-risk forecasts of the FHS model for downside and upside market risk
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However, one of the main gaps in the relevant literature is that
the one-day ahead out-of-sample VaR forecasting performance of
the long-memory GARCH-type models has not been adequately
compared with the performances of two other popular models
commonly used by financial institutions: the FHS and HS
models. In this regard, this study compares the performance of
long-memory GARCH-type models with FHS and HS models
in order to examine whether or not long-memory GARCH-type
models also perform better than FHS and HS models for eight
different financial variables (WTI, gasoline, EUR/USD, JPY/
USD, NIKKEI 225 stock market index, TSEC weighted stock
index, copper, and gold).

Our results clearly show that the FHS model should be used
for long trading positions, whereas the HYGARCH model

under skewed student t distribution assumption should be
preferred for short trading positions. Additionally, findings also
indicate that the worst models for downside market risk are the
HYGARCH and FIAPARCH models under standard normal
distribution assumptions, while it is the HS model that is worst
for upside market risk. In this regard, the results presented
by this study provide financial institutions and investors with
important information about market risk measurement, variance
forecasting, option pricing, asset allocations, and hedging
decisions.

However, this study only compares the one-day ahead out-of-sample
VaR forecasting performance of standard long-memory GARCH-
type models (i.e. FIGARCH, HYGARCH, and FIAPARCH
models) with standard FHS and HS models. However, some papers
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Figure 3: Out-of-sample value-at-risk forecasts of the HS model for downside and upside market risk
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in the extant literature report that newly-developed extensions of
standard long-memory GARCH-type models (e.g. the adaptive
FIGARCH model developed by Baillie and Morana (2009), and
the time-varying FIGARCH model introduced by Belkhouja and
Boutahary (2009)) have a better forecasting performance than
the standard long-memory GARCH-type models. Therefore,
adaptive- and time-varying FIGARCH model performances
can also be compared with FHS and HS model performances.
Additionally, instead of filtering FHS with a standard GARCH

model with normal distribution, which is the common approach in
the relevant literature, the HY GARCH or FIAPARCH models with
skewed student t distribution assumption can also be used as filters
for the FHS model, which in turn may lead to further improvements
to the FHS model’s forecasting performances. Moreover, since the
backtesting procedure is one of the most important parts of VaR
analysis, different backtesting procedures can also be employed to
evaluate the models’ performances. However, all these issues have
been left for future studies.
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Table 11: FHS and HS models’ ES values (%)

—4.9142 —5.5734 —1.4900 —2.0440 —2.6683 —2.3834
0.0250 —5.2400 —7.1141 —1.3378 -1.7129 —3.6543 —2.3554 —-3.0615 —2.7389
0.0100 —5.9341 —8.3669 —1.5007 —2.3053 —3.9643 —2.5727 —3.5675 —3.5744
0.0050 —7.6078 —12.958 —1.6206 —2.7617 —4.0974 —3.0480 —4.2590 —5.3330
0.0025 —8.4171 —13.816 —1.6999 —3.2240 —7.9251 —3.9213 na —6.2703

HS
0.0500 —5.2538 —6.6758 —1.3554 —1.5180 —3.5278 —2.7794 —3.4758 —2.7095
0.0250 —6.1276 —8.8408 —1.5566 —1.8708 —4.2131 —3.6786 —4.8175 —3.5015
0.0100 —8.5136 —12.068 —1.8534 —2.2525 —6.1327 —4.9569 na —7.8099
0.0050 —10.088 —17.284 —2.1957 —2.6039 —7.4705 —4.9569 na —7.8099
0.0025 —11.126 —21.163 —2.1957 —3.2240 —7.9251 na na —7.8099
0.9500 4.8930 6.2420 1.3264 1.2956 2.7634 1.7945 2.7467 2.3024
0.9750 6.5270 7.3580 1.4799 1.6385 3.2259 2.3654 3.0957 2.6758
0.9900 8.9448 8.4571 1.6670 1.9589 4.1947 2.4052 3.6824 3.0466
0.9950 9.2348 8.8576 1.8696 2.0602 4.4730 2.5733 4.3448 3.7036
0.9975 9.8140 14.513 2.6085 2.7456 5.0486 2.8202 6.5152 3.9293
HS

0.9500 5.4883 6.3729 1.3937 1.4237 3.1209 2.7485 3.8764 2.6319
0.9750 6.5010 7.5086 1.5483 1.8346 3.8506 3.0169 5.1733 3.3024
0.9900 8.6563 9.3068 2.0375 2.2886 5.1781 3.5112 6.5152 3.9978
0.9950 9.8465 10.776 2.3953 2.7553 59172 na 6.5152 4.3361
0.9975 10.753 15.772 3.0643 3.0848 6.6826 na na 4.8388

“na” denotes that there is no exception, Which also indicates that the relevant model measures the real VaR more than it should
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