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ABSTRACT

The natural gas price is an important and often decisive variable for economic policy makers. Many studies have been developed in order to establish 
a stochastic process that can represent the movements or the returns of natural gas prices or variations of such prices time series to forecast price 
expectations. This work aims to study the relationship between natural gas and crude oil prices in the international market, proposing to investigate 
its nature and long term equilibrium, through the development of adequate econometric models for determining future expectations of major natural 
gas price benchmarks, or of their returns. In order to accomplish this, time series for both benchmark crude oil and natural gas prices are subjected 
to statistical tests with the purpose of verifying the underlying hypotheses behind the appropriate autoregressive dynamic models. The conditional 
heteroskedasticity and non-normality of the return series, which are prevalent characteristics in energy markets, are considered when elaborating 
these models. To reach the purpose of this work weekly natural gas and crude oil prices benchmarks traded in the international market were collected.

Keywords: Natural Gas Prices, Crude Oil Prices, Cointegration, Causality, Autoregressive Distributed Lag Model 
JEL Classifications: C22, C51, G15, Q40

1. INTRODUCTION

All natural gas is a critical resource for national economies, whose 
importance is expressed not only by its substantial use in the industry 
as a source of heat and energy, as well as an input for production, 
but also through its relevant role in residential and commercial 
heating systems. A relevant implication of the versatility arising 
from this wide range of applications is that demand variations 
for a certain use of natural gas may have a significant impact on 
prices for other applications. Accordingly, from the beginning of 
the last decade, gas price volatility has been remarkable. After 
hitting record levels with the 2005 and 2008 peaks, gas prices 
have continuously plummeted following the outbreak of the global 
financial crisis. This volatility is partly associated with difficulties 
with gas transportation in localities where pipeline infrastructure 
is not consolidated. Given these limitations, there is no global 
market for natural gas and local prices may be largely dependent 
on regional production and availability. Therefore, as observed 

by the Union of Concerned Scientists (2014), the setting of prices 
is subjected, to a certain degree, to local supply and demand 
fundamentals. However, an important factor also to be considered 
in pricing is the long term relationships in the energy market. As 
energy sources may be substituted for end uses, it is only reasonable 
to suppose that energy prices of difference sources are in some way 
associated. Indeed, many studies have been developed over recent 
years confirming the cointegrating relationship between different 
energy commodity prices. Among these studies many are about the 
relationship between natural gas and crude oil prices, which have 
in several instances been characterized as stable and possessing a 
long-term equilibrium. This is consistent with economic theory, 
as noted by Hartley and Medlock (2014), which suggests that 
different types of fuels are in competition, though some studies 
have presented evidence against this relationship.

Important economic implications are derived from ascertaining 
the existence or not of a stable relationship between crude oil 
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and natural gas prices. One might mention the importance of 
permanent shifts in this relationship to policy makers, as such 
changes may aid or frustrate attempts to promote the use of 
one fuel type over another when one of these is subject to more 
significant environmental externalities, as noted by Hartley and 
Medlock (2014). Similarly, companies and investors are interested 
in such a link insofar as understanding it may allow for lucrative 
investments, arbitrage opportunities, speculative strategies and 
hedging.

This work aims to study the relationship between natural gas 
and crude oil prices in the international market, proposing to 
investigate its nature and long term equilibrium, through the 
development of adequate econometric models for determining 
future expectations of major natural gas price benchmarks, 
or of their returns. In order to accomplish this, time series for 
both benchmark crude oil and natural gas prices are subjected 
to statistical tests with the purpose of verifying the underlying 
hypotheses behind the appropriate autoregressive dynamic models. 
The conditional heteroskedasticity and non-normality of the return 
series, which are prevalent characteristics in energy markets, are 
considered when elaborating these models.

The remainder of this paper is structured as follows: Section 2 
presents a literature review, with comments on studies that analyze 
the relationship between natural gas and crude oil prices in the 
international market. Section 3 introduces the methodological 
approach employed to fulfill the objectives of this work, whilst 
Section 4 describes the sample selected to do so. Section 5 
shows and provides comments on the results obtained from 
the econometric procedures undertaken for the purposes of this 
research. Finally, Section 6 is concerned with the final remarks of 
this study, and is followed by a list of references.

2. LITERATURE REVIEW

There is an extensive empirical literature on the relationship 
between natural gas and crude oil prices. Many studies have been 
developed in recent decades with the purpose of verifying the 
existence of a long term relationship between these two series, as 
well as analyze the adequacy of the use of time series models to 
describe this relationship. Some comments on these studies are 
presented in the following paragraphs.

Hartley and Medlock (2014) investigate the existence of a stable 
long-term relationship between natural gas and crude oil prices, 
identify shocks that cause shifts from this relation, and estimate the 
duration of the adjustment process. Three time series are analyzed 
namely, WTI crude oil prices, henry hub (HH) natural gas prices, 
and residual fuel oil prices, on a monthly frequency from February 
1990 to October 2006. An error correction model is employed 
to study the relationship. Hartley and Medlock (2014) conclude 
these prices remain linked in their long term evolution through an 
indirect relationship, which is manifested through the competition 
between natural gas and residual fuel oil. This contradicts the direct 
relationship to which most of the previous literature points. The 
results indicate that crude oil prices are exogenous to the system 
that includes natural gas and residual fuel oil prices, specifically, 

this system tends to respond to movements in the international 
crude oil market, but the reverse does not hold true. Long-term 
relationships are attained after an adjustment period. Therefore, 
a rise in the global crude oil price results in a rise in the residual 
fuel oil price, and, ultimately, in a rise in natural gas price.

Another paper worth mentioning is that of Brown and Yücel 
(2007). These authors use an error correction model to show that 
when factors such as weather, storage, and others are taken into 
account, crude oil price movements have a significant role in the 
formation of natural gas prices. In order to analyze the relationship 
between weekly natural gas and crude oil prices, Brown and Yücel 
(2008) use a sample that covers the period of January 1994 to 
July 2006, which is further restricted to the period of June 1997 
to July 2006 when the influence of climate, seasonality, shocks 
and storage are all considered. It cannot be inferred from the 
estimated regression models that movements in oil and gas prices 
are properly explained, which may have contributed to the view 
that these variables are independent of each other. A regression 
model with an error correction mechanism reveals that weekly 
crude oil and natural gas prices still have an important relationship, 
conditioned to weather, seasonality and storage. Considering all 
these additional factors, natural gas price movements are well 
explained by those of crude oil price.

The work of Panagiotidis and Rutledge (2007) evaluates the 
relationship between natural gas and Brent crude oil prices in the 
UK, in order to determine whether these prices have “decoupled”, 
as the orthodox gas market liberalization theory would suggest. 
To that end, unit root and cointegration testes were employed. 
It has been argued that in liberalized markets, such as the 
United Kingdom’s, the link between crude oil and natural gas 
prices disappears. However, between 1990 and the end of 2000, 
the relationship between these two markets appears to be strong. 
The work shows evidence that, in the UK, natural gas prices and 
crude oil prices are cointegrated. Recursive methods show that the 
cointegration hypothesis is not affected by the Bacton-Zeebrugge 
gas interconnector. This indicates that, although the UK market 
is considered to be liberalized, crude oil and natural gas prices 
possess common stochastic properties.

Leykam and Frauendorfer (2008) used spot price data from 
the four largest natural gas price benchmarks traded in Europe, 
namely, National Balancing Point (NBP), Zeebrugge, TTF and 
Bunde, in order to analyse the interrelationships between these 
price series. The sample covers the period from March 2005 to 
May 2008, with a total of 824 observation for each series. The 
Engle-Granger and Johansen cointegration tests were employed to 
test cointegration between these four markets. Regression models 
with error correction mechanisms were also estimated in order to 
analyse spread between markets, whilst autoregressive conditional 
heteroskedasticity models and causality tests were applied to study 
volatilities. Results show that the European natural gas markets are 
linked by a long term relationship, in which prices do not deviate 
more that transportation and transaction costs in the long-run. 
However, the magnitude of this integration is dependent on the 
market pair being considered. The market pair NBP and Zeebrugge 
deserves special attention, as it appears to be very integrated.
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A more recent study by Brigida (2014) conducts an analysis of the 
cointegrating relationship between natural gas and crude oil prices 
by incorporating shifts in the cointegrating vector when estimating 
the equation. The cointegrating equation is switched between m 
states, according to a first-order Markov process. The cointegrating 
equation’s suitability for the two-state regime-switching model 
is evidence that there is a switching relationship between natural 
gas and crude oil prices. Statistical inferences indicate integration 
between these energy markets, and show that forecast models 
relating natural gas and crude oil prices should be conditioned 
on state probability.

In another recent study by Nick and Thoenes (2014), structural 
vector autoregressive model is developed to be applied to the 
German natural gas market, analysing key factors that determine 
natural gas prices. The data collected include NCG natural gas 
prices, WTI oil prices and North-Western-European coal price, 
ranging from January 2008 to June 2012. Results suggest that 
natural gas price is affected by temperature, storage and supply 
shortfall in the short-run, whilst in the long-run the main factors 
are crude oil and coal prices, which reflects the economic 
environment and the substitution relationship between different 
energy commodities.

Finally, it is also worth mentioning the work of Frey et al. 
(2009), which investigates the econometric literature regarding 
crude oil forecasting. A taxonomy for econometric models 
for oil price forecasts is established, a critical analysis of the 
different methodologies is conducted, and an interpretation of 
the heterogeneous findings in the empirical literature is also 
provided. Econometric models in the existing literature are thus 
divided into three categories; time series models, which exploit 
the statistical properties of historical data, financial models based 
on the relationship between spot and futures prices, and structural 
models, which describe how economic drivers affect the future 
values of crude oil prices. It was noted that, for the reviewed 
studies, the random walk and the autoregressive model never 
outperform more general models. Some authors suggest combining 
the performance of different models as a good strategy. By doing 
so, it is possible to obtain significant improvements in forecasting 
accuracy. It is not possible, however, to identify which class of 
models outperforms the rest in terms of accuracy.

3. METHODOLOGICAL APPROACH

Research involving time series presents a set of obstacles. For 
the most part, empirical research that includes this type of data 
assumes the underlying time series is stationary, meaning, in a 
broad sense, that its mean, variance and autocovariance do not 
change systematically over time. Since time series models are 
frequently used in forecasting, it is important to verify whether 
this assumption holds true, or whether the statistical inferences 
obtained may be considered as valid if the underlying time series 
is not in fact stationary. One of the most common problems when 
using non-stationary time series is spurious regression, which is 
defined as a regression where there is a statistically significant 
coefficient of determination R² between two variables that should 
not, a priori, be related. Yule (1926) verified that this phenomenon 

remains in non-stationary series even if the sample is very large. 
According to Granger and Newbold (1976), R² > D is a good rule 
of thumb for suspecting the existence of spurious regression, where 
D designates the Durbin-Watson statistic.

Thus, verifying the hypothesis of stationarity is extremely 
relevant for the elaboration of models that describe a time series 
or a stochastic process. The conditions for stationarity of a time 
series are fulfilled when its mean, variance and autocovariance, 
in various lags, do not change over time. Therefore, the series 
has a tendency towards mean reversal and fluctuations around 
the mean, measured by the variance, have constant amplitude, as 
noted by Gujarati (2004).

The most direct way of establishing the existence of stationarity 
would be to conduct the t test; however, under the null hypothesis, 
the t value of the estimated coefficient of Yt−1 does not follow 
the t distribution, even in large samples. An alternative to this 
issue was developed by Dickey and Fuller (1979), who showed 
that, under the null hypothesis of δ=0, the estimated t value of 
the Yt−1 coefficient follows the τ (tau) statistic. Critical values 
of τ were thus computed through Monte Carlo simulations and in 
the literature the τ test is commonly referred to as Dickey-Fuller 
(DF) test. A popular version of this test is the Augmented DF test 
(ADF), applied when the error term սt is correlated. As shown 
in equation (1), the new test is conducted with the added lagged 
values of the variable ∆Yt.

1 2 1 1

m

t t i t i ti
Y   t Y Yβ β δ α ε− −=

∆ = + + + ∆ +∑  (1)

Where ɛt is a pure white noise error term, β1 and β2 are constants. 
The number of lagged values to be included for the variable ∆Yt 
is empirically determined so as to eliminate serial correlation in 
the error term. The term   includes a deterministic trend and the 
β1 term is applicable when there is suspicion of a random walk 
with drift, as opposed to a pure random walk.

Generally speaking, if a time series need to be differentiated n 
times so as to become stationary, it is denoted as integrated of 
order n, which is represented as Yt~I(n). As noted by Wooldridge 
(2009), if the series in question is stationary, differentiation is not 
necessary, it is said that such a series is integrated of order zero, 
or Yt~I(0). Let Xt e Yt both represent I (1) time series; regressing 
Yt on Xt yields the following result:

1 2t t tY X u β β= + +  (2)

u Y Xt t t= − − 
1 2

 (3)

An interesting situation arises when սt, isolated on the left-
hand side of equation (3), is I(0), which means that the linear 
combination of two non-stationary time series is stationary. In this 
case, the linear combination cancels the stochastic trends of the 
two series. As a result, the regression of Yt on Xt is not spurious 
and the two variables are cointegrated. The regression showed on 
equation (2) is named cointegrating regression and the β2 term is 
denoted as cointegrating parameter, as noted by Gujarati (2004).
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Although the possibility of spurious regressions calls for 
caution when employing the levels of I(1) variables, which 
makes differentiation the safest course of action, exploring the 
cointegrating relationship between two variables expands the 
scope of questions that can be answered. Through the economic 
perspective, two cointegrated variables have a long-term or 
equilibrium relationship between them that allows the use of the 
traditional regression methodology. Thus, if սt from equation (3) 
is stationary, the series Yt and Xt are cointegrated. In order to test 
whether such is the case, it is enough to simply apply the DF 
test or the ADF test on the cointegrating equation’s residuals. 
This characterizes the Engle-Granger test, or Augmented Engle-
Granger test, respectively, as observed by Gujarati (2004). An 
important distinction to be noted is that, since the residuals 
estimated on equation (3) are based on the estimated cointegrating 
parameter β2 the DF or ADF test critical values are no longer 
appropriate. Engle and Granger (1987) therefore computed 
new critical values for the cointegration test. If Yt and Xt are not 
cointegrated, the regression from equation (8) is spurious and 
meaningless: there is no long term relationship between Y and X. It 
is still possible to regress the differentiated variables ∆Yt and ∆Xt, 
however, the interpretation in this case is related to how well the 
differentiated X variable explains the differentiated Y variable, and 
this regression says nothing of the relationship between the two 
variables on level. Conversely, if the variables are cointegrated, 
more general dynamic models may be employed. For more details, 
see Wooldridge (2009).

An autoregressive model includes one or more lagged values of 
the dependent variable among the explanatory variables. Equation 
(4) shows an example of an autoregressive model:

1t t t tY   X Y uα β γ −= + + +  (4)

Such models are also known as dynamic, as they represent the 
dependent variable’s path over time in relation to its past values. 
When the regression model includes not only the current value, but 
also the lagged values of the explanatory variables, it is called a 
distributed lag model. Generally, this model, with k lagged periods, 
may be described by the following formula:

0 1 1 2 2t t t t k t k tY   X X X X uα β β β β− − −= + + + +…+ +  (5)

The β0 coefficient shown on equation (5) is known as short-run 
multiplier, because it expresses the change in Y’s mean due 
to a contemporaneous unit variation in X. After k periods, the 
distributed lag long-run multiplier is given by equation (6):

     ii

k

k=∑ = + + +…+ =
0 0 1 2

 (6)

The dependence of the endogenous variable Y on the exogenous 
variable X is rarely instantaneous but occurs with a delay denoted 
as lag. Therefore, autoregressive and distributed-lag models are 
very useful in econometric analysis. There are three main reasons 
behind the phenomenon of lags. The first set may be characterized 
as psychological reasons and stems from the force of habit, or 
the inertia of economic agents. Technological reasons are also 
partly responsible for lags. These are related to the time taken 

to implement changes in response to price variations and due 
to imperfect knowledge of such changes. Limited knowledge 
is particularly prevalent in dynamic sectors, such as the high 
technology sector, which may cause hesitation to realizing changes 
in response to potentially transitory variations. A third reason for 
lags is related to institutional obstacles.

With the concepts elucidated above, it is possible to define a 
dynamic time series model denominated autoregressive distributed 
lag (ARDL) model. As noted by Pickup (2014), such a model is 
a combination of the autoregressive and distributed lag models 
described, thus containing lags of both dependent and independent 
variables on the right-hand side of the equation. Equation (7) 
represents an ARDL (p, m), with p lags of the dependent variable 
and m lags of the independent variable:

0 1 11 1

p m

t j t j t i t i tj i
y   y x x  α α β β ε− + −= =
= + + + +∑ ∑  (7)

Where ɛt is a pure white noise error term.

The previously defined models assume homoscedasticity of the 
error terms. However, autocorrelation may be present in the 
variance of the error term on instant t in relation to its past 
values. This phenomenon was first observed by researchers 
analyzing financial time series such as stock prices, inflation rates 
and exchange rates. The noted autocorrelation is denominated 
autoregressive conditional heteroskedasticity and expressed 
by the ARCH model presented in the seminal paper by Engle 
(1982). This model was subsequently widespread in econometric 
literature for the case when the variance of the stochastic term is 
related to the square of the lagged value of the stochastic term. 
If the error variance is related to the squared errors of several 
past periods, the process is known as generalized autoregressive 
conditional heteroskedasticity (GARCH). Financial and energy 
market time series show high volatility and are, for the most part, 
random walks. Therefore, it would be only natural to model the 
first differences, which is usually stationary, however, the first 
differences of these series frequently have high volatility. This 
suggests that the variance of financial time series changes over 
time. Consider the dynamic model represented by equation (8) 
below:

0 1 1 1t t t ty   y x  α α β ε−= + + +  (8)

In order to model the dynamics of the variance of ɛt, it is important 
to establish the distinction between conditional and unconditional 
variances. It is assumed is constant and without serial correlation, 
as shown in equation (9) below:

( )
2 0

0 0t t s
,  s

E
  ,   s

σε ε −
 == 

≠
 (9)

Though the assumption of constant unconditional variance still 
holds, the conditional variance of past error values is allowed to 
change over time. Therefore, the error term is now modelled as 
a process with conditional variance E(ɛtɛt−s), that is, as a function 
of the past values of the variance. A common way of doing so is 
by modelling the squared errors as an autoregressive process of 
order m, which defines the ARCH(m) process:
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ε ζ φ ε φ ε φ ε ωt t t m t m t
2

1 1

2

2 2

2 2= + + +…+ +− − −  (10) 
Where ωt is a white noise process of zero mean and constant 
unconditional variance. Time series models that include such a 
process in error modelling are named ARCH models. According 
to Engle (1982), equation (10) may be estimated using the OLS 
and the maximum likelihood methods for consistent and similar 
results. The ARCH test is useful to verify the existence of 
correlation in the error variance. It consists of estimating equation 
(10) and subsequently employing the F statistic to analyze the 
following null hypothesis:

0 1 2: 0mH  φ φ φ= =…= =  (11)

Should the null hypothesis described by equation (11) hold true, 
then ε ζt

2= , that is, the variance is constant and there is no ARCH 
effect. One of the versions of the ARCH model that has proved 
most popular in the literature is the GARCH model, first proposed 
by Engle and Bollerslev (1986). This new approach defines the 
conditional variance generating process as an ARMA process. The 
GARCH (p, q) model is represented by equation (12) ahead.

σ α α β σt i

q

i t i i

q

i t iu2

0 1

2

1

2= + +
= − = −∑ ∑  (12)

Equation (12) proposes that the conditional variance of the error 
term on instant t is dependent not only on the squared term of 
past error, but also on the conditional variance of past periods, 
Bollerslev (1986) for more details.

As elucidated by Gujarati (2004), the existence of a relationship 
between two variables, verified through regression analysis, does 
not prove causality or the direction of this influence. A particular 
situation arises for the case of time series regressions: if event A 
precedes event B, it is possible that A may cause B, but it is not 
conceivable that B may cause A, as, clearly, the future cannot cause 
the past. Granger (1969) made use of this principle when elaborating 
a causality test that has become widespread in econometric literature. 
Let Xt and Yt represent two time series; the question to be considered 
is whether Xt “causes” Yt or whether Yt “causes” Xt. It is assumed 
that the relevant information for the prediction of these variables 
is entirely incorporated in their time series. Conducting the test 
involves estimating the following regressions models:

X Y X ut ii

n

t i j t jj

n

t= + +
= − −=∑ ∑α β
( ) ( )1 1 1

 (13)

Y Y X ut i

n

i t i j

n

j t j t= + +
= − = −∑ ∑1 1 2

λ δ  (14)

Where the residual terms ս1t and ս2t are uncorrelated. Equation 
(13) proposes that the contemporaneous value of X is related to 
its own past values and those of Y, whilst equation (14) predicts 
a similar behavior for Y. There are four possible outcomes, each 
of which imply different conclusions from the test. The first case 
is that of unidirectional causality from Y to X, and is indicated if 
the estimated coefficients of the lagged values of Y in equation 
(13) are, as a set, statistically different from zero α ii

n

=∑ ≠( )
1

0 , 

while the set of coefficients of X in equation (14) are not 
δ jj

n =( )=∑ 0
1

. A second possibility consists of unidirectional 

causality from X to Y, valid for the conditions of α ii

n =
=∑ 0
1

 and 
δ jj

n ≠
=∑ 0
1

. The third outcome, that of bilateral causality, is 

suggested when the sets of estimated coefficients of X and Y are 
both statistically different from zero on both regressions. Finally, 
a fourth case of independence arises if the X and Y are not 
statistically significant in either of the regressions. Thus, if 
including lagged value of X leads to a significant improvement in 
the prediction of Y, it may be say that X Granger causes Y. 
However, some assumptions have to be verified in order to ensure 
the validity of the conclusions derived from the Granger causality 
test. It is worth mentioning, among those, that the two variables 
X and Y must be stationary. As previously noted, the disturbance 
terms must be uncorrelated. The number of lags to be introduced 
in the test is an empirical question, to be resolved through 
information criteria, such as the Akaike or Schwarz criteria. It 
should be noted that, as observed by Gujarati (2004), the direction 
of the causality may be highly dependent on the number of lags 
chosen.

The data used in this study is presented in the following section.

4. THE DATA – SAMPLE USED

The two important benchmarks of natural gas prices in the 
international market are the HH and the NBP in the US and 
United Kingdom markets, respectively. The NBP gas market is 
the oldest in Europe, in operation since the late 1990s. The NBP 
price is widely used as an indicator of the wholesale market for 
natural gas in Europe while the well known natural gas HH is 
used in North America market and HH in Louisiana represents 
the standard delivery point for natural gas future contracts traded 
on the New York Mercantile Exchange. As regards crude oil, the 
two main benchmarks in the international markets are Brent and 
WTI crude oil types. Brent crude oil refers to crude oil extracted 
in the North Sea and traded in the London market, while WTI 
crude oil type originates from US producing region, traded in the 
New York market.

The sample used in this work comprises the NBP and HH weekly 
spot prices, collected in the Bloomberg web-site, and Brent and 
WTI crude oil types weekly spot prices collected from the EIA, 
the North American energy agency. The sample covers the period 
from September 2007 up to January 2016, four time series of 437 
observations. The Brent and WTI crude oil types were collected 
in US dollars per barrel while prices for the HH and NBP natural 
gas prices were converted into US dollars per Million BTU.

The plots shown in Figure 1 below show the WTI and HH weekly 
prices, the US market references, and the Brent and NBP weekly 
prices, European market benchmarks. The crude oil prices show a 
similar behavior of natural gas. The stationarity of these time series 
appear to be implausible. These plots suggest a large variation for 
the average during the period studied. The variance also varies 
over time. It is possible to identify cyclic movements in these 
time series but not a seasonality pattern. It can also be observed 
that the time series studied show a financial time series classical 
behavior, that is, a random walk. These two plots shown in Figure 1 
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demonstrate similar movements, which suggests correlation. As 
Gujarati (2004) observes the first difference of price time series 
is usually stationary.prices for the HH and NBP natural gas prices 
were converted into US dollars per Million BTU.

The Table 1 presents the time series statistical summary, with 
summary measures, normality and stationarity hypothesis tests 
results. The average prices differ for the natural gas and crude oil 
benchmarks, respectively. The average and standard deviations 
prices allows to infer that the natural gas HH presents a greater 
volatility than the NBP whereas the Brent and WTI crude oil 
types prices show a similar behavior. All the skewness coefficients 
differ from the normal distribution coefficient, apart from the HH 
that was positive and farthest from zero. The HH prices kurtosis 
coefficient differs from other price time series used in this work, 
apart from the HH prices that shows a leptokurtosis. The other 
price time series are lower than the normal distribution, indicating 
platykurtosis. The Jarque-Bera test demonstrates that the normality 
for all time series analyzed could not be accepted. This is a 
common feature in the financial assets and commodities price time 
series. As previously noted, the prices time series selected do not 
show stationarity and their variation or first difference must be 
stationary. Thus, from the price time series collected the variations 
of these prices or the returns were calculated.

Therefore the price return time series logarithmic returns were 
calculated for the weekly prices presented above using the 
following formula:

R
P

Pt
t

t

=
−

ln( )
1

 (15)

where Rt represents the return in period t, and Pt represents the 
price in period t. The price time series are integrated of order 1, 
that is I(1), the return time series obtained from the price time 
series transformation will be stationary, that is I(0). The plots 
shown in Figure 2 presents the price returns time series. Table 2 
below shows a statistical summary of price return time series of 
the crude oil and natural gas benchmarks, as well as the normality 
and the stationarity hypothesis tests results. The average values 
of these time series have similar values and as demonstrated by 
standard deviation the NBP natural gas return time series show the 
greatest variability. It is possible to reject the normality hypothesis 
at a significance level of less than 1%. According to the ADF test, 
it is possible to reject the unit root hypothesis for the returns time 
series at a significance level of <1%. Thus, as the plots analysis 
and as occurs with financial series, the crude oil and natural gas 

prices are integrated of order 1, or I(1), once their first differences 
constitute stationary time series. Figure 2 below shows the price 
return time series, and from the plots it is possible to identify a 
common behavior in these price return time series, with highly 
positive or negative observations appearing in clusters, that is, 
the phenomenon of concentration of higher volatility followed 
by others periods of relative lower volatility. This shows that the 
volatility of the current period is related to that of past periods, 
which presupposes autoregressive heteroskedasticity. Using the 
ARCH test for price returns time series this proposition can be 
confirmed.

5. ANALYSIS OF THE RESULTS OBTAINED

The relationship between natural gas and crude oil prices has 
been investigated for the US and UK markets through the 
Engle-Granger cointegration test for the US market where the 

Figure 1: Oil Spot Weekly Prices (US$/Barrel) and Natural Gas Spot Weekly Prices (US$/MMBtu)

Table 1: Statistical summary of weekly price time series
NBP HH Brent WTI

Mean 8.25 4.45 89.43 83.41
Median 8.60 3.89 97.13 88.50
Maximum 16.00 13.20 141.07 142.52
Minimum 2.90 1.68 27.76 29.19
Std deviation 2.35 2.06 25.58 22.26
Skewness −0.02 1.95 −0.49 −0.04
Kurtosis 2.47 7.13 2.11 2.75
Jarque-Bera 7.539 588.170 31.834 14.380
(P-value) (0.023) (0.000) (0.000) (0.001)
ADF P value 0.389 0.199 0.382 0.339
Observations 437 437 437 437
NBP: National Balancing Point, HH: Henry hub

Table 2: Statistical summary of weekly price returns time 
series

NBP HH Brent WTI
Mean −0.0012 −0.0023 0.0020 −0.0021
Median 0.0000 −0.0022 −0.0007 −0.0013
Maximum 0.3478 0.3010 0.2002 0.2512
Minimum −0.3455 −0.3093 −0.1646 −0.1910
Std deviation 0.0857 0.0634 0.0424 0.0450
Skewness 0.2092 0.0747 −0.0968 −0.0619
Kurtosis 6.0357 6.6423 5.7759 6.9453
Jarque-Bera 170.982 588.170 140.992 283.699
(P-value) (0.000) (0.000) (0.000) (0.000)
ADF P value 0.000 0.000 0.000 0.000
Observations 437 437 437 437
NBP: National Balancing Point, HH: Henry hub
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natural gas and crude oil benchmarks are the HH and WTI prices 
respectively. Thus, the model used for the DF unit root test has 
as its dependent variable the first difference of stochastic terms 
that was obtained from the HH price regression on WTI prices. 
A linear regression with intercept of the stochastic terms when 
using the Engle-Granger cointegration test was implemented. 
Given the AIC criterion, this model was the most appropriate. 
The same procedure was applied to the NBP natural gas and the 
Brent crude oil prices benchmarks in the UK market, where the 
most appropriate model for this cointegration test was the same 
mentioned before but without the intercept. The model describe 
above can be written as follows:

1 1t t tu uβ δ ε−∆ = + +  (16)

The results obtained with the cointegration hypothesis using the 
Engle-Granger test are respectively −4.3992 for the HH and WTI 
weekly prices, and −3.6557 for the NBP and Brent weekly prices. 
With p values close to 0.0074 and 0.0018, respectively. The results 
obtained with the cointegration hypothesis using the Engle-Granger 
test are respectively −4.3992 for the HH and WTI weekly prices, 
and −3.6557 for the NBP and Brent weekly prices. With p values 
close to 0.0074 and 0.0018, respectively. The critical values for 
these tests are −3.922, −3.350 and −3.054 for significance levels 
of 1%, 5% and 10%, respectively. With these results, the null 
hypothesis of non-cointegration between the natural gas and crude 
oil prices in the US and UK markets can not be accepted. Therefore, 
there is a long-term relationship between the HH and WTI prices 
as well as between the NPB and Brent crude oil prices, which rule 
out the possibility of a spurious regression between the natural gas 
and crude oil prices practiced in the US and UK markets.

The causality is the other hypothesis that must be tested since the 
existence or not of causal relation can be determinant in the models 

constructed to explain prices or returns of natural gas traded in the 
international market. It should emphasized that the Granger’s causality 
test, presented in the methodology of this work, assumes the stationary 
hypothesis of the variables involved. This hypothesis can be accepted. 
The causality tests results conducted between the HH and WTI price 
returns and between the NBP and Brent type crude oil price returns 
were carried out with lags from 1 to 12 and the results are listed on 
Table 3. It can be observed from the p value for all lags considered the 
WTI price returns cause HH price returns, which does not occur in the 
opposite direction. These results are consistent with the widespread 
hypothesis that crude oil price cause the natural gas price. On the other 
hand, the results suggest a unilateral or bilateral causal relationship 
between the Brent and NBP returns, which differ from the hypothesis 
in which oil prices are an important factor in the natural gas pricing.

To explain the natural gas price returns a ARDL model up to 12 
lags for the variables was used. Among several ARDL models 
estimated using the AIC criterion an ARDL (3,3) was selected. 
From this preliminary model, a new model was proposed excluding 
the variables with non-significant parameters. Thus, a final ARDL 
model to explain HH price returns was obtained. Using the same 
criteria the appropriate ARDL model to explain the NBP natural 
gas price returns was an ARDL (2,8). A final NBP model without 
no statistical significance parameters was obtained.

The heteroskedasticity suggested by the plots of price returns time 
series shown in Figure 2 presented in Section 4 was verified. This way 
the ARCH test for the stochastic terms of the respective models selected 
mentioned before was implemented using the following model:

ε ζ φ εt t
2

1 1

2= + −  (17)

The ARCH test results show the existence of the ARCH effect, 
once the F statistic for the models referring to the returns of the 

Figure 2: Crude oil weekly price returns (US$/Barrel) and natural gas weekly prices returns (US$/MMBtu)
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HH was 21.4334 and the returns of the NBP prices were 30.3193, 
respectively. It should be mentioned the p-values are close to zero. 
Thus, ARCH effect hypothesis was accepted. Furthermore in 
order to improve the models it is important to include the ARCH 
processes to deal with the autoregressive heteroskedasticity. For 
this purpose, several alternatives of GARCH processes (p, q) were 
included in the natural gas price return models presented above, 
with p and q varying from zero to five. The Akaike criterion pointed 
out the best GARCH models are: GARCH (1,2) and GARCH (1,3), 
for the HH and NBP, respectively.

Another consideration observed was the violation of the normality 
assumption of the series of price returns. Thus, the Student t 
distribution was used in the construction of the models to explain 
the returns of HH and NBP prices.

Therefore the final models estimated to obtain expectations of the 
price returns and, consequently, of the prices of natural gas in the 
international market can be described as follows, for the returns 
of the HH and NBP returns, respectively, RHH and RNBP.

( ) ( ; ; )RHH I Studentt t HHt HHt HH− ∼
1

2µ σ ν

RHH RHH RWTI eHHt t t t HHt= + + +− −α α α
1 1 2 32

 (18)

σ δ δ γ σ γ σHHt HHt HHt HHte2

1 2 1

2

1 1

2

2 2

2= + + +− − −

( )RNBP I Studentt t NBPt NBPt NBP− ∼
1

2
) ( ; ;µ σ ν

RNBP RNBP RNBP eNBPt NBPt= + + +− − −α α α
1 t 1 2 t 2 3 t 3

 (19)

σ δ δ γ σ γ σ γ σNBPt NBPt NBPt NBPt NBPte2

1 2 1

2

1 1

2

2 2

2

3 3

2= + + + +− − − −

Tables 4 and 5 above show respectively the RHH and RNBP 
models estimates results. These tables presents, besides the 
statistics of the coefficients: residual sum of squares, Durbin 
Watson statistic (DW), Akaike criterion (AIC) and mean square 
error (MSE).

6. FINAL REMARKS

The objective of this work was to investigate the relationship 
between natural gas and crude oil price, as well as to verify the 

crude oil prices relevance models constructed to determine price 
expectations of natural gas traded in the international market. 
From this paper overview, it can be observed that the objectives 
have been achieved. Through the classical statistical inference 
procedures it was possible to verify the existence of long-term 
equilibrium relationship which was confirmed by the Engle-
Granger cointegration test, with 5% of significance, for both 
the HH and the WTI, and for the NBP and the Brent. It was also 
possible to verify the Granger causality which allows us to infer 
that the crude oil price returns somehow cause the variations of 
natural gas return prices. This causal relationship demonstrated to 
be unilateral for the WTI and HH price changes, whereas for the 
NBP and Brent price returns this appears in two ways. The ARCH 
test for residuals of the preliminary ARDL model, developed 
between the natural gas and crude oil price returns pointed out the 
non-rejection of the autoregressive heteroskedasticity hypothesis, 

Table 3: Granger causality test results for price return time series
Lags HH →WTI WTI →HH NBP →Brent Brent →NBP

F statistics P-value F statistics P-value F statistics P-value F statistics P-value
1 1.9461 0.1637 4.5946 0.0326 13.1024 0.0003 0.0941 0.7592
2 1.2045 0.3009 3.0446 0.0486 6.8624 0.0012 2.3708 0.0946
3 0.6755 0.5674 2.5863 0.0527 5.3943 0.0012 1.5485 0.2013
4 0.8822 0.4744 2.2729 0.0607 4.1854 0.0025 1.2799 0.2771
5 0.5932 0.7052 1.8291 0.1059 3.3652 0.0054 1.0560 0.3843
6 0.5245 0.7898 1.9232 0.0758 3.3183 0.0033 2.0818 0.0543
7 0.4701 0.8562 1.9863 0.0557 3.5623 0.0010 1.9493 0.0607
8 0.5591 0.8113 2.5955 0.0089 5.4900 0.0000 2.1218 0.0328
9 0.6236 0.7771 2.3104 0.0153 5.1628 0.0000 2.0720 0.0309
10 0.7164 0.7092 2.0425 0.0281 5.0606 0.0000 1.8944 0.0443
11 1.4361 0.1539 1.7859 0.0544 5.0482 0.0000 1.6453 0.0839
12 1.6879 0.0670 1.6574 0.0740 4.7386 0.0000 2.0151 0.0219

Table 4: Model HH-estimation results
Parameter Coefficient Standard error Statistic t P-value
α1 0.1623 0.0462 3,5156 0.0004
α2 −0.0923 0.0495 −1.8658 0.0621
α3 0.1945 0.0556 3.4976 0.0005
δ1

0.0002 0.0000 3.9469 0.0001
δ2

0.0826 0.0634 3.4453 0.0006
γ1

1.4729 0.0747 22.4583 0.0000
γ2

−0.5969 6.6423 −12.3005 0.0000
ν 7.7660 2.5153 3.0875 0.0020
RSS 1.6509 AIC −2.9372
DW 2.1201 MSE 0.0038
RSS: Residual sum of squares, DW: Durbin Watson

Table 5: Model NBP-estimation results
Parameter Coefficient Standard error Statistic t p-value
α1 −0.1779 0.0489 −3.6399 0.0003
α2 −0.0813 0.0487 −1.6680 0.0953
α3 0.2624 0.0779 3.3681 0.0008
δ1

0.0004 0.0002 2,2553 0.0241
δ2

0.2581 0.0666 3,8771 0.0001
1

1.0441 0.1378 7.5795 0.0000
2

−0.8589 0,1703 −5,0442 0.0000
3

0.5183 0.1085 4.7763 0.0000
 5.6189 1.7164 3.2738 0.0011
RSS 2.9815 AIC −2.4454
DW 1.9845 MSE 0.0068
RSS: Residual sum of squares, DW: Durbin Watson
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suggesting that the inclusion of ARCH process in the stochastic 
models should be mandatory in order to deal with price volatility. 
The fact that the price returns time series differ from the normal 
distribution that was treated here using the Student t distribution 
also deserves attention. It should be noted that imposing limits for 
the numbers of lags for the GARCH model and the ARDL model 
constrained the set of models, so that there are other models to 
describe the dynamic relationship between natural gas and crude 
oil price returns. However, the models proposed here present a 
satisfactory indicator of price returns direction.

For future studies it must be highlighted the importance of 
including alternatives models to test the hypothesis here tested, 
through more comprehensive lags limits or variations of the 
presented models. The GARCH model, in particular, has several 
variations, such as EGARCH or TGARCH that would enable 
other, and maybe better adjustments. Besides that, the stochastic 
volatility models can be implemented. The results of the forecasts 
can be improved by including other relevant explanatory 
variables once other studies mention that factors such as climate, 
storage conditions and seasonality play an important role in the 
relationship between natural gas and crude oil prices. In addition, 
the use of other methodological approaches would allow to obtain 
the more robust results.
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