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ABSTRACT

In order to realize the goal of optimal use of energy sources and cleaner environment at a minimal cost, researchers; field professionals; and industrialists 
have identified the expediency of harnessing the computational benefits provided by artificial intelligence (AI) techniques. This article provides an 
overview of AI, chronological blueprints of the emergence of artificial neural networks (ANNs) and some of its applications in the energy sector. This 
short survey reveals that despite the initial hiccups at the developmental stages of ANNs, ANN has tremendously evolved, is still evolving and have 
been found to be effective in handling highly complex problems even in the areas of modeling, control, and optimization, to mention a few.
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1. INTRODUCTION

The study of intelligence is one of the earliest disciplines 
(Russell and Norvig, 2016). Conjectures about the nature of 
intelligence have been traced back to the Greek and other 
Mediterranean philosophers and there has been the proposition 
that intelligence is related to the activity of neurons and synapses 
(Brunette et al., 2009). The catchphrase, “artificial intelligence 
(AI)” was contrived more than three decades ago, but there is no 
universally approved definition of the phrase. This may be due 
to the present abstract and immeasurable nature of intelligence 
(Konar, 1999). Categories of AI definition include those that relate 
to thought and reasoning, those that are focused on behavior, those 
that measure success in connection with human performance 
and those that evaluate against an ideal notion of intelligence 
termed rationality (Russell and Norvig, 2016). Psychologist and 
cognitive theorists are of the view that intelligence is the ability 
to identify the proper piece of knowledge in the right instances of 
decision making (Konar, 1999; Russell and Norvig, 2016). From 
this viewpoint, AI has been construed as the simulation of human 

intelligence on a machine for efficient identification and utilization 
of the appropriate piece of “knowledge” at a particular stage 
of problem-solving by the machine. Another school of thought 
has stated that AI is a subject that has to do with computational 
model with the ability to think and act rationally and this has 
been justified by the opinion that rationality entails all elementary 
characteristics of intelligence. This definition may, therefore, be 
taken to possess pragmatic significance. Taking rational action 
requires rational thinking. Successful planning is an outcome of 
rational reasoning because, in several instances, planning is part 
of a reasoning process. Possessing learning capability is integral 
to thinking because without the former, possession of perception 
is impossible. In addition, taking rational action requires obtaining 
adequate knowledge from real-world information (Konar, 1999).

As a specialized field, AI imitates human brain behavior and 
essentially relies on learning the system behavior from the 
obtainable/historical data of the system in order to analyze a 
problem domain and forecast the performance of the system being 
understudied. These, it does with the aid of hardware and software. 
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This study seeks to enunciate the relevance and current limitations 
of artificial neural networks (ANNs) (which is one of the foremost 
computational techniques) in ameliorating the challenges facing 
the energy sector. The rest of this paper is organized as follows: 
Section 2 presents the learning theories of AI, Section 3, highlights 
the chronological developmental stages of ANN and the basic 
architectures, Section 4 discusses some of the major learning 
mechanisms in ANNs, the implementation of ANN is presented 
in Section 5, Section 6 expounds the challenges facing the energy 
sector, Section 7 reviews the applications of ANN in resolving 
some of the challenges of the energy sector, and the conclusion 
of the study is presented in Section 8.

2. LEARNING THEORIES

Despite the successes recorded in the use of AI programs as 
problem solvers, learning has continued to be a challenging 
problem. This inadequacy appears to be severe, mainly because 
the ability to learn is a principal characteristic of intelligent 
behavior. In order to avoid unnecessary repetition of a sequence 
of computations for similar problems, there is a need for programs 
to learn from experience, analogy, examples, and instruction. 
While learning is a difficult research area, numerous programs 
have been written that indicate that it is not an impossible goal. 
Some approaches addressing the issue of learning in relation to 
AI are presented as follows.

ANNs, evolutionary computation, swarm intelligence, artificial 
immune systems, and fuzzy logic are some of the AI paradigms 
which have been used effectively to solve real-life problems 
(Abiyev et al., 2015; Engelbrecht, 2007; Jain and De Wilde, 
2012; Zhu, 2014). Each of these paradigms originates from 
biological systems, has biological motivation and models 
biological and natural intelligence. ANNs imitate biological 
neural systems and permit the system to learn experiential data. 
Evolutionary computation is hinged on the concept of natural 
evolution and helps with handling imprecision (Engelbrecht, 
2007; Senthilkumar, 2014). Swarm intelligence imitates the social 
behavior of organisms existing in swarms or colonies (Acharjya 
and Kauser, 2015; Engelbrecht, 2007; Senthilkumar, 2014). 
Artificial immune systems model the human immune system 
and it is primarily used for solving pattern recognition problems, 
executing the task of classification, and for the clustering of data 
(Engelbrecht, 2007). It does these in a way similar to how the 
natural immune system distinguishes between antigen and the 
cells that belong to the body through its amazing pattern matching 
ability. Fuzzy logic is instigated from researches on organisms’ 
interaction with their environment and has the advantage of 
enabling the computer to understand natural language. Currently, 
there are inclinations towards developing hybrids of paradigms for 
the purpose of eliminating the weaknesses of specific components 
of a hybrid AI system by exploiting the strengths of the components 
(Engelbrecht, 2007).

3. ANNs APPROACH

In relation to other learning theories, the neural learning theory 
is the most utilized in a large number of applications. Neural 

learning tool which artificially simulates the behavior of a system 
and predicts its performance is typically regarded as an ANN. 
Generally, ANN is an area of AI that has the capacity of identifying 
the non-linear input-output relationship of a system for the purpose 
of diagnosing and controlling the performance of the system. It is 
capable of adjusting its values to correct errors from the output, 
and these make it an extra powerful learning tool (Ayoola et al., 
2019; Makinde et al., 2012). In this session, a brief history and 
some concepts on the ANN are outlined.

3.1. History of ANN
Advances in biological research have made it possible to 
understand the natural thinking mechanism and have shown that 
the brain store information as a pattern. The brain is a sophisticated, 
nonlinear and parallel computer and has the capacity to do tasks 
like pattern recognition, perception, and control, swiftly than 
any computer. It has the ability of learning, memorization, and 
generalization. These capabilities of the brain form part of the 
motivation for studies on algorithmic modeling of biological neural 
systems which is termed ANNs (Engelbrecht, 2007).

In 1943, preliminary works on modeling of the functions of the 
brain neurons were done by physiologists, McCulloch and Pitts. 
The duo introduced a mathematical model of a biological neuron 
that is still in use today. The model has two inputs, a single 
output, and equal weights. The significance of the model as at 
then was its ability to compute any logical expression (McCulloch 
and Pitts, 1943). The first learning rule for the McCulloch and 
Pitts Neural Network which defined law for synaptic neuron 
learning was proposed by Donald Hebb in 1949. This law is 
termed the Hebbian Learning Rule. It is the most fundamental 
and straightforward learning rules for ANNs and deals with ways 
in which synapses can change their efficiencies (Hebb, 2005). 
Subsequently, Frank Rosenblatt, who was also a physiologist, 
designed the succeeding model of the neuron, called the perceptron 
in 1958. The perceptron was a linear system created as an effort 
to use neural network for character recognition and for solving 
problems in which the input classes were linearly separable in 
the input space. The ability of the perceptron model to recognize 
pattern was experimentally demonstrated by recognizing different 
simple characters (Rosenblatt, 1958). In 1960, an adaptive linear 
model called the ADALINE was developed by Widrow and Hoff. 
The model is based on the least mean square algorithm and was the 
first ANN to be employed in a commercial application (Widrow 
and Hoff, 1960). The stochastic gradient descent method for 
adaptive pattern classification was introduced by Amari in 1967 
(Amari and Maginu, 1988).

Contrariwise, a major limitation of the perceptron which was its 
lack of ability to group patterns that are not linearly separable in 
the input space was pointed out by Minsky and Papert (Minsky and 
Papert, 2017). Although the mathematical proofs of the limitation 
of the perceptron as presented by Minsky and Papert greatly 
discouraged pioneering works on ANN in the 1970s, Kohonen 
(1972) and Anderson (1972) individually proposed the mathematical 
model for associative memory trained by the Hebbian Learning Rule 
in 1972 (Kohonen, 1972). In 1974, the backpropagation algorithm 
was discovered and introduced by Werbos. Backpropagation which 
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is a kind of gradient descent algorithm is used with ANNs for 
minimization and curve-fitting. This discovery is relevant to solving 
the limitation of the previous perception model (Werbos, 1974). In 
the meantime, in 1976 Grossberg studied self-organizing networks 
derived from the human visual systems (Grossberg, 1976). The 
inability of the first perceptron to deal with non-linearly separable 
data was not an intrinsic deficiency of the technology; it is rather 
an issue of scale, as the perceptron was a two-layer perceptron. In 
1980, Hecht-Nielsen revealed that multilayer perceptron was able 
to solve nonlinear separation problems. Later on, Parker (1985) 
and LeCun (1985) simultaneously and independently revived 
backpropagation which was originally introduced by Werbos (1974). 
Afterward, in 1986, Hinton et al. (1986) reinvented and popularized 
the backpropagation algorithm (Hinton et al., 1986; LeCun, 1985; 
Parker, 1985; Werbos, 1974).

The works of Hinton et al. (1986) in responding to the criticism 
of Minsky and Papert (1969) resulted in passionate increased 
interest in ANN. As such, several research efforts have been 
successfully geared towards effective replication of the human 
brain behavior, the use of ANN has gone beyond simple pattern 
recognition problems to the very complex problems and ANN is 
being extensively applied on several diverse areas (Hinton et al., 
1986; Minsky & Papert, 2017).

3.2. Architectures of ANN
The fundamental unit of a neural network model is the neuron. 
The neuron is made up of a cell body with an intrinsic nucleus; 
dendrites that send the external signals to the cell body; and axons 
that transfer the signals out of the cell to other cell bodies. This 
structure has been transformed in relation to analog computational 
technology as a perceptron which represents the fundamental 
unit of an ANN and contains processing element (comprising of 
summation function and transfer function); the multiple signal 
inputs which are linked with the perceptron through adjustable 
weighting elements; and the signal output(s). There is also an 
additional input into the perceptron known as the bias and is 
deemed to be a switching element.

The pictorial representation of the biological neuron and its analog 
counterpart is as shown in Figure 1.

As depicted by Figure 1, a perceptron typically accepts a number 
of concomitant inputs with individual input having its own 
proportionate weight. Each of the proportionate weight provides 
its respective input with the impact required of it on the summation 
function of the processing element. Hence, the proportionate 

weights carry out a very similar task as those of the differing 
synaptic strengths of biological neurons. For both the synaptic 
weight of perceptron and synaptic strengths of biological neurons, 
certain inputs are made more significant than the others; this ensures 
that the more significant ones have more impact on the processing 
element when they combine to generate a neural response. The 
weights are adjustable coefficients within the network and they 
regulate the strength of the input signal as indicated by the artificial 
neuron. The weights indicate the connection strength of inputs and it 
is possible to adjust these strengths in response to different training 
sets, in relation to the specific architecture of a network or through 
its learning rules (Anderson and McNeill, 1992).

Also from equation 1, it can be seen that individual input into 
the perceptron is multiplied by its respective connection weight 
(synaptic weight). This means that the inputs are weighted. In the 
most basic instance, these products (weighted inputs) are just added 
in the summation element, and along with the bias they are passed 
through a transfer function to produce a result, and subsequently, 
the output. It is important to state that some applications do not 
always utilize neurons that merely sum-up, and in so doing smooth 
inputs. ORing, ANDing and several other functions can be built 
into the summation element. In other to create time-dependent 
networks, certain functions even integrate the input data over time 
(Anderson and McNeill, 1992). The transfer function (which the 
previously weight input and bias pass through) is also referred to as 
the activation function. It defines the characteristics of an artificial 
neuron and could be any mathematical function. The transfer 
function is chosen with reference to the problem that is intended 
to be solved by the artificial neuron in such a way that output may 
be enabled to satisfy more real-world interfaces. Details on the 
selection of activation function can be found in Kuan and White 
(1994) and other literature. Step function, linear function, sigmoid 
(non – linear) function, sine, and hyperbolic tangent are examples 
of the frequently used functions in the “non – linear element” 
of the perceptron (Anderson and McNeill, 1992; Suzuki, 2011).

Going by the pictorial description of the perceptron in Figure 1, 
the output from the perceptron may be mathematically defined 
in equation 1:
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When the bias satisfy the condition wTx+b0≥0, the perceptron is 
activated and produces output signals; otherwise, it does not (Palit 
and Popovic, 2006).

Figure 1: Representation of neuron and perceptron (Palit and Popovic, 2006)
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Where xi, wi, y0, b0 and wT represents input signals, adjustable 
synaptic weights of the input signals, output signal, bias, transpose 
of the synaptic weights, respectively.

While the operational principles and basic set of rules of artificial 
neuron seem so ordinary, the maximum capacities and computing 
power of artificial neuron models can be harnessed when they 
are interconnected. When two or several artificial neurons are 
combined, an ANN is derived; and ANNs utilize the fact that 
complexity can emerge from just a few fundamental and simple 
rules (Suzuki, 2011). As a result of processing information in their 
elementary units in a non-linear, distributed, parallel and local way, 
ANNs possess the capability to solve complex practical problems 
that lone artificial neurons cannot solve (Suzuki, 2011).

Architecture, topology, and graph of an ANN have been 
used interchangeably to mean the way a number of neurons 
are organized or positioned with respect to one another; the 
arrangements which are principally structured by directing the 
synaptic connections of the neurons. In an effort to maximally 
harness the pros of the mathematical complexity obtainable 
from the interlinking of artificial neurons and in order not to 
make the system unnecessarily complex and unmanageable, the 
individual artificial neurons are not just connected randomly 
(Suzuki, 2011). A sizeable number of previous researches have 
been directed towards standardization of ANN topography and 
several standardized” topographies of ANNs have emerged from 
those researches. These predefined topographies make problem-
solving easier, faster and more efficient. Distinctive topographies 
are suitable for addressing different categories of problems. The 
topology of the ANN has to be selected and fine-tuned once the 
problem type to be solved has been identified. Fine-tuning the 
ANN topology itself and its parameters is a precondition for 
getting the network ready for use (Suzuki, 2011). The interlinking 
of artificial neurons can be carried out in numerous ways and this 
results in several possible topologies. The possible topologies are 
grouped into two basic classes which are the feedforward and the 
recurrent topologies. In the feedforward topologies, information 
flows only unidirectionally from the inputs to the outputs. On 
the contrary, some of the information not only flow from inputs 
to outputs but also flow in the reverse direction in recurrent 

topologies. In addition to the basic classes of topologies, neurons 
making up a network are grouped into layers for ease of handling 
and mathematical description of the ANNs (Suzuki, 2011). These 
layers are: the input layer (which receives data, signals, features, 
or measurements from the external environment); the hidden/
invisible/intermediate layer (comprising neurons which extract 
patterns connected with the process being analyzed and execute 
most of the internal processing of the network); and thirdly, the 
output layer (comprising of neurons which generates and presents 
the ultimate outputs of the network, which are outcomes of the 
processing implemented by the neurons in the hidden layers) (da 
Silva et al., 2017; Suzuki, 2011). Figure 2 is a simplified illustration 
of an ANN.

3.3. Models of ANN
3.3.1. Feedforward ANN
ANNs with feedforward topology are known as feedforward 
ANNs. The only condition for feedforward neural network is 
the unidirectional flow of information from inputs to outputs 
without any back-loops. As stated in the previous session, input 
layer neurons receive information from the environment. This 
information is transferred weighted (by the connection weights 
between the input and hidden neurons) to the neurons in the 
intermediate layer. The intermediate layer neurons then transform 
the corresponding input signals by the activation function in 
each of the neurons, to create neural signals. The neural signals 
generated by the intermediate layer are also weighted by the 
connection weights between the hidden neurons and the output 
neurons and are forwarded to the neurons in the output layer. 
These weighted signals are then transformed by the activation 
function in each corresponding output neuron. Conversely, the 
signals that determine the actions required are thus, produced by 
the output neurons. All information emanating from the neurons in 
a “lower” layer is processed concurrently (and not successively) by 
the neurons in an “upper” layer and there is a constant term which 
is referred to as the bias term in each of the activation functions 
which adds flexibility to the responses of the intermediate and 
output neurons.

The most basic feedforward ANN is a single perceptron, which 
has the ability to learn linear separable problems only. However, 

Figure 2: Illustration of simple artificial neural network (Suzuki, 2011)
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there are no restrictions on the number of layers, the number of 
neurons in each layer, the type of transfer function employed 
in each neuron or the number of links between the neurons in 
feedforward ANN. It is worthy to note that, even simple multilayer 
feedforward ANNs as in the case of the feedforward ANN with 
one hidden layer (with the input, hidden and output layers having 
three, two and one neurons respectively) shown in Figure 3 and 
described using equations (2) through (9), result in relatively 
long mathematical description in which the network’s parameter 
optimization cannot be done manually. Computers and specialized 
software are used for mathematically description, building and 
parameter optimization of all types of ANNs for practical use 
(Suzuki, 2011). Another notable characteristic of feedforward 
ANN is the inability to memorize information because of the lack 
of back – loops. The feedforward neural networks treat all sample 
data as new even if the sample data have temporary dependence 
on previous signals (Kuan and White, 1994).
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Where x, n, m denotes input signals into the input, hidden and 
output layers, respectively. y represents the output signal from 

the network. w, q, r symbolizes the adjustable weights of signal 
inputs to the input, hidden and output layers, respectively. F and 
b represent the transfer functions and biases, respectively.

3.3.2. Radial basis function (RBF) neural network
RBF networks are a distinctive category of feedforward neural 
networks that have a three-layer architecture. The network is 
simply connected to its environment by the input layer. The 
invisible layer comprises a number of neurons, and these neurons 
nonlinearly transform the input parameters with a RBF like the 
Gaussian function, the thin plate spline function, etc. The output 
layer is linear and functions as a summation unit. Figure 4 shows 
the representative structure of an RBF neural network.

Some of the pros of RBF networks are the ease of design, effective 
generalization, high tolerance to input noises and online learning 
ability. From the point of generalization, RBF networks are able 
to respond adequately to patterns not previously used for training 
(Yu et al., 2011).

3.3.3. Kohonen neural network
Kohonen neural networks are a variant of feedforward neural 
networks that utilize an unsupervised learning approach. They 
organize the output neurons into a spatial map by means of a 
process that can be termed as self-organization; as such they 
are otherwise known as Kohonen self-organizing maps (SOM) 
(Akerkar and Sajja, 2010). A Kohonen network is made of two 
layers of processing units which are the input and output layers. 
The network has no hidden layer. As input pattern is being fed 
into the network, there is competition between the neurons in the 
output layer, and the neuron which has it’s incoming connection 
weights nearest (with respect to the Euclidean distance) to the input 
pattern normally wins. Therefore, as the input is being introduced 
to the network, individual output neuron calculates its nearness 
or matches score to the input pattern. The output that is nearest 
to the input pattern “wins” and earns the entitlement to have its 
connection weights modified. The connection weights are shifted 
in the direction of the input pattern by a factor estimated by a 
learning rate parameter. The topological mapping created by the 
Kohonen network is achieved not only by adjusting the winner’s 

Figure 3: Simple multi-layer feedforward artificial neural network (Suzuki, 2011)



Babatunde, et al.: Artificial Neural Network and its Applications in the Energy Sector – An Overview

International Journal of Energy Economics and Policy | Vol 10 • Issue 2 • 2020 255

weights but also by modifying the weights of the adjacent output 
neurons in the vicinity to the winner. This ensures that not only are 
the weights of winners are modified, the entire neighborhood of 
output neurons is also drawn nearer to the input pattern. Beginning 
with the randomized weight values, the output neurons gradually 
align themselves in a way that when an input pattern is introduced, 
a neighborhood of neurons responds. As training progresses, the 
size of the neighborhood radiating out from the winning unit is 
decreased. The rate of learning will decline as training continues, 
and in certain executions, the rate of learning declines with the 
distance from the winning output neuron.

3.3.4. Recurrent neural networks
As stated in the preceding subsection, the feedforward neural 
network is unable to memorize data. When the sample data have 
temporary dependence on previous signals as in the case of 
learning to predict future elements of a time series, the feedforward 
ANN has to be expanded with a memory mechanism to take care of 
the dynamic patterns. This, in addition to feedforward connections, 
will require feedback loops to preserve past information in the form 
of the information processing state. The ANN which possesses 
recurrent topology is known as a recurrent neural network.

The recurrent neural network has no limitations with respect to 
back loops and information is transmitted both in the forward and 
backward directions. The flow of information in both directions 
generates an internal state of the network which permits internal 
feedback and exhibition of dynamic temporal behaviour. The 
simplest topology of the recurrent ANN is referred to as a fully 
recurrent artificial network; it is a network in which each of the 
fundamental elements (artificial neurons) is directly linked to all 
other basic elements in every direction. Hopfield, Elman, Jordan, 
bi-directional are some unique examples of recurrent ANNs.

4. THE ANN LEARNING MECHANISM

Training an ANNs is among the most vital matters associated with 
the operational use of their potentials. Once the type and structure 
of the network and the transfer function have been selected for a 
specific application, the next thing is to train the network so it can 
learn to satisfactorily respond to inputs. The training of a selected 

architecture of ANN involves adjustment of the synaptic weights 
and thresholds of its neurons by application of a set of ordered 
steps. The process of adjustment is termed learning algorithm and 
its purpose is to tune the network in order to obtain outputs that 
are close to the targeted values. It is essential that an appropriate 
learning strategy is chosen for training the network (Szymczyk 
and Szymczyk, 2015). Some of the distinguishing factors between 
learning mechanisms are the training data types accessible to the 
learner, the order and method by which training data is received 
and the test data used to appraise the learning algorithm. The 
commonly used learning mechanisms which include supervised 
learning, unsupervised learning and reinforced learning are 
elucidated in this section.

4.1. Supervised Learning
Supervised learning is a technique in which the learner accepts 
the expected outputs for a particular set of input signals and uses 
it as training data to predict all hidden points (Mohri et al., 2018). 
For this learning strategy, individual training samples comprises 
the input signals and their respective outputs. Therefore, an input-
output data table which typifies the process and its behavior is 
required. This input-output data table is known as an attribute/
value table. The attribute table provides the information which 
the neural structure uses in developing a hypothesis about the 
system it is learning (da Silva et al., 2017). In this way, the 
network behaves as if there is a coach teaching it the appropriate 
response to every input. To obtain the desired response to every 
input made available to the network, the learning algorithm 
compares the outputs produced to the desired outputs. Based on the 
disparity observed, the network continues to modify the synaptic 
weights and thresholds using the adjustment procedure. In view 
of the purposes of generalizing solutions, the network is deemed 
“trained” when the discrepancy falls within a satisfactory range 
of values. Hence, supervised learning is a representative example 
of pure inductive inference, in which the network’s free variables 
are attuned based on foreknowledge of the anticipated outputs 
for the system being investigated. This learning strategy is most 
commonly often used for classification, regression, and ranking 
problems (Mohri et al., 2018).

4.2. Unsupervised Learning
Unsupervised learning is a technique in which the learner is provided 
with entirely unlabeled training data for making predictions of all 
hidden points (Mohri et al., 2018). In other words, the network 
receives inputs but are not provided with desired outputs. With this 
learning strategy, the parameters of the ANNs are set with reference 
to the data given and a cost function which is to be minimized. The 
cost function can be any function and it is determined by the task 
formulation. In unsupervised learning, the focus is to determine 
how the data is organized (Suzuki, 2011). The features to be used 
in grouping the input data is determined by the system itself. This 
is usually referred to as self-organization or adaption. The network 
has to organize itself when particularities exist among the elements 
that make up the whole sample set, and in addition, subsets (or 
clusters) possessing similarities also have to be identified (da Silva 
et al., 2017; Suzuki, 2011). For the identified clusters within the 
network to be taken into account, the learning algorithm modifies the 
synaptic weights and thresholds of the network. On the other hand, 

Figure 4: Typical structure of an radial basis function network
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the network designer can stipulate beforehand, the highest possible 
number of these probable clusters, based on the understanding 
of the problem (da Silva et al., 2017). Quantitative evaluation 
of a learner’s performance can be difficult because generally, no 
labeled example is available for the learner (Mohri et al., 2018). 
Unsupervised learning finds practical applications mostly within the 
domain of estimation problems such as clustering, dimensionality 
reduction, compression, statistical modeling, filtering and blind 
source separation (Mohri et al., 2018; Suzuki, 2011).

Although unsupervised learning is currently not completely 
understood as a full-blown learning strategy, the strategy can be used 
to carry out certain initial characterization on inputs and its ability to 
adapt to the environment makes it an excellent promising learning 
strategy that can be found practically suitable in real-life situations 
which rarely present exact training sets and for situations where the 
unexpected aspect to life has to be prepared for. An example of such 
situations is military action where new warfare techniques and novel 
weaponries might be encountered (Anderson and McNeill, 1992).

4.3. Reinforcement Learning
Reinforcement learning is the study of planning and learning in 
a setup where a learner actively interacts with the environment 
to realize a particular goal. It is a technique that is aimed at 
programming the learner by reward and punishment without 
requiring specification on how a task is to be achieved (Kaelbling 
et al., 1996). Reinforcement learning focuses on how to map 
situations to actions in such a way that the numerical reward 
signal is maximized. Unlike most machine learning strategies, 
reinforcement learning is not provided with what actions to 
take but by itself has to find out which actions give the most 
reward by trying them. This is however associated with difficult 
computational obstacles. In some cases, actions may not only affect 
the immediate reward but also affect subsequent situations, and 
consequentially, all succeeding rewards (Sutton and Barto, 2018). 
Without stating which action is to be taken, the reinforcement 
signal which the environment provides is simply given to an 
intelligent agent for it to take good and appropriate action. The 
intelligent agent, therefore, relies on former experience actions 
and outcomes. To get an enormous reward, a reinforcement learner 
has to prefer previous actions that it has tested and proven to be 
effectual in yielding reward. In addition to that, it must test actions 
that it has not chosen previously. This implies that it is necessary 
for the agent to leverage what it previously knows so as to obtain 
a reward. In addition, it must also explore for better action choices 
to be made in the future (Qiang and Zhongli, 2011).

Reinforcement learning methods are taken to be a variant of 
supervised learning methods, as they constantly evaluate the 
departure of the network’s response from the desired output (Sutton 
and Barto, 2018). However, in reinforcement learning, the learning 
process is heuristic because the response for a particular input 
can either be satisfactory or unsatisfactory and if the response is 
satisfactory, the behavioral condition associated with the system 
is reinforced (rewarded) by a gradual increment of the synaptic 
weights and thresholds. The heuristic search and deferred reward 
are the principal differentiating characteristics of reinforcement 
learning (Sutton and Barto, 2018).

A number of learning algorithms employed by reinforcement 
learning are centered on stochastic approaches that choose the 
modification actions probabilistically, by taking into account a 
finite set of probable solutions that can be rewarded if they have 
likelihoods of producing satisfying outcomes. In the course of 
the training process, the probabilities associated with action 
adjustment are modified to improve network performance. The 
reinforcement learning strategy has been found useful in solving 
control optimization problems. Usually, control optimization 
problems have to do with identifying the best action in every 
state visited by the system for the purpose of optimizing certain 
objective functions. When a system has a very huge amount of 
states (>1000) and has a complex stochastic structure, which is 
not amenable to closed-form analysis, the reinforcement learning 
technique is usually used (da Silva et al., 2017).

5. IMPLEMENTATION OF ANN

Several software packages and program codes are currently 
available for the implementation of the underlying principles of 
diverse mythologies of ANNs to forecast the performance of any 
type of system. Generally, developing a valid and effective ANN 
model requires an appropriate choice of activation functions. 
More often than not, once the choice of activation is made, the 
unknown parameters (connection weights) will be estimated 
and subsequently, the right number of invisible units will be 
determined. The network must properly be trained to ensure it 
learns the connection weights (Kuan and White, 1994).

The number of hidden units determines the complexity of the 
network; hence the complexity has to be regularized by finding the 
appropriate number of hidden units. When the training sample is 
fixed, a large number of hidden units may result in data overfitting. 
To prevent data overfit while seeking to enhance approximation 
capability during the implementation of ANN models, network 
complexity may be regularized by applying a standard selection 
criterion. Bayesian information criterion (BIC) and predictive 
stochastic complexity (PSC) are some of the selection criteria 
that are well known. The BIC has two terms; one of the terms has 
to do with model fitness while the second term penalizes model 
complexity. With these two terms, the BIC is appropriate for the 
regularization of network complexity. The PSC approach gives an 
average of squared prediction errors. For a given number of inputs, 
the network having the lowest BIC or PSC provides the desired 
number of invisible units (Kuan and White, 1994).

A sufficient understanding of activation functions is required 
for making the appropriate choice. Activation functions are 
mathematical functions that convert the input to an ANN to output. 
There are several activation functions that can be used in ANN. 
The most basic is the linear activation function. It gives a direct 
relationship between the input and output and it is denoted by the 
expression in equation 10:

 y f x= ( ) � � �  (10)

The linear activation function is normally used for the output layer 
activation function. Most of the problems being addressed using 
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ANN are nonlinear in nature. To achieve nonlinearity, high degree 
polynomial functions which are also known as nonlinear functions 
are required because they provide the complexity factor needed to 
make ANN a true universal function approximator. Since 2015, 
the rectified linear unit (ReLU) has been the most used activation 
function (equation 11).
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ReLU is a simple condition and has merits over the other functions. 
Ciaburro and Venkateswaran (2017) offered extensive information 
on some other functions such as unit step activation function, 
sigmoid and hyperbolic tangent. They posit that the chosen 
activation function should generally be differential and not cause 
gradients to vanish; it should be simple and fast in processing; 
and should not be zero centered because of the nonlinear and 
complex problems that ANNs are meant to handle (Ciaburro and 
Venkateswaran, 2017).

6. CHALLENGES FACING THE ENERGY 
SECTOR

The main objectives of the power generating industry are to 
supply electricity at minimal cost and to constantly render quality 
service (Babatunde et al., 2019). These objectives are rarely fully 
accomplished. Some of the factors limiting the achievement of 
these objectives are the inevitable constant change in load, rapidly 
increasing energy demand, changes in weather conditions, and the 
need to achieve a cleaner environment. (Bourguet and Antsaklis, 
1994). The conventional approach of generating electrical 
energy from non-electrical ones typically involve combustion of 
fossil-based fuels such as natural gas and coals and the process 
of generating electricity from these fuels basically requires 
boiler, turbine, and generator; and by extension, some auxiliary 
equipment which work together with the main units to meet the 
megawatt demand (Bourguet and Antsaklis, 1994). Like every 
other industrial process where production target is rarely static, 
power generating plants often have to operate at off-design or part-
load conditions because of the fluctuating power demands or short 
supply of fuels. Changes in megawatt demand (load variation) 
have been reported to result in changes in the efficiency of the 
power plant (Karakurt, 2017; Nakamura and Toyota, 1988). This 
is a result of the changes in process parameters that inherently 
accompany changes in megawatt demand. Of these process 
parameters, change in superheated steam temperature has the 
largest effect on the efficiency of steam power plants and effective 
control has to be in place to maintain the superheated steam at the 
optimum temperature (Nakamura and Toyota, 1988). Other key 
parameters also have to be precisely controlled and maintained 
at desired values required for the target performance of power 
plants. In time past when the operation of power plants was over 
a baseload, single input - single output (SISO) feedforward control 
strategies were adequate for the plants. However, as demand 
grows, and fuel crises ensue, and new environmental restrictions 
emerge, the control strategies which were hitherto adequate have 
to be replaced with more efficient control strategies. In addition to 
these, the task of control is complex because of the high coupling 

among the process variables and the nonlinear nature of the process 
(Bourguet and Antsaklis, 1994). Asides from effective control 
mechanisms, effective load forecast models to predict the needs 
of the electrical grid is a necessity.

According to Sorrell (2015), most analysts have pointed out that 
improving efficiency and reducing energy demand largely contribute 
to obtaining a cleaner environment. This assertion, however, seems 
to contradict the globally acclaimed direct link between wealth and 
energy demand (Sorrell, 2015). Sorrell (2015) also posited that 
the relationship between improved efficiency and energy demand 
reduction is far from been forthright because of the divergent 
interpretation of improved energy efficiency and as such, reduction 
in energy demand can be difficult than is generally presumed. In 
further establishing the author’s position on the multifacetedness 
of energy demand reduction as a subject matter, the relationships 
between energy demand and economic growth, energy efficiency, 
energy market, energy policy, and sociotechnical systems were 
expounded. In the process of integrating various perspectives 
on energy demand reduction, the weight ascribed to each factor 
that affects the demand for energy differs. From an economic 
perspective, Sorrel (2015) pointed out that demand for energy will 
not reduce if energy prices do not rise and if there are no policies 
to reduce the economic hindrances to improved energy efficiency. 
In addition to the issue of favorable policy, interventions that foster 
energy-efficient choices and support for new, energy-efficient 
technologies at various stages of innovation chain are also required 
for energy demand reduction. Taking these further, optimization 
techniques offer a systematic approach to establish necessary 
trade-offs when designing systems that will run efficiently and 
generate lesser pollutants at a minimal cost. When inefficiencies 
are observed in any section of a plant, optimization serves as a tool 
for maximizing or minimizing process parameters as a corrective 
measure to increase efficiency. Multi-variable optimizations, which 
consider important interactions between subsystems are veritable 
tools for achieving optimum performance of plants and they rely 
on reliable models of the plants. Notably, the interaction between 
subsystems making up a plant is complex, and models depicting 
these interactions are highly nonlinear in nature. The development 
of such comprehensive models from the first principle is highly 
cumbersome as they require deep knowledge of several physical 
sciences and engineering principles, which may not be handy.

Energy from renewable sources is known to be environment-
friendly and inexpensive (Babatunde et al., 2018; Babatunde 
et al., 2019; Babatunde et al., 2019). Although renewable sources 
of energy may not be able to generate sufficient energy to fully 
replace fossil fuels in the short term, their complementary role in 
supplying/meeting the energy demand is vital to the sustenance 
of modern civilization (Babatunde et al., 2019). The numerous 
challenges associated with the incorporation of renewable 
energy plants to the conventional power grid, however, limit 
their contribution to the dependable and viable energy supply, 
which is critical and inevitable to the sustenance of contemporary 
civilization (Babatunde et al., 2019). The dependence on weather 
conditions and the intermittency of these renewable energy sources 
is one of the foremost challenges. These attributes make matching 
supply and load cumbersome, thereby upsetting the stability of the 
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electrical network. It is therefore pertinent that accurate model that 
can forecast the intermittency of these renewable energy sources 
be developed in order to have an economical access to the energy 
sources, effectively manage the entire electrical network and reduce 
the negative cost impact of intermittency on the network (Ferrero 
et al., 2019; Fouilloy et al., 2018; Notton et al., 2018). Although 
there are properly developed fundamental physical models for 
the individual components of all types of renewable energy 
generation systems, the direct characterization of these systems 
using closed mathematical terms is not practical. This is because 
of the complexities which arise from the combination of these 
components. In addition to the intermittent nature of renewable 
energy sources, some challenges encountered in integrating 
renewable energy plants to conventional grids are linked with 
the reliability of the systems generating the energy. The issue of 
reliability is also a leading cause of power outages in standalone 
conventional power plants. An effective fault diagnosis system 
to detect failures in electrical components of both standalone and 
integrated electrical systems is pertinent to achieving improved 
reliability (Bourguet and Antsaklis, 1994; Ferrero et al., 2019).

Inferences drawn from literature summarized indicate the 
multifaceted and complex nature of the problems facing the energy 
sector, and obtaining a viable solution to these problems requires 
tools that are able to adequately handle the complex relationship 
between the variables associated with the problems. In a literature 
survey conducted by Ferrero et al. (2019), it was pointed out that 
ANN is recommended for use when it is desired to generate new 
knowledge that is otherwise difficult to obtain; improve forecasting 
accuracy with a wide range of variable; when documentation of 
activities and data from variables, and replication of results with a 
high quality depends on good procedures and information systems 
and when results which are flexible and dynamically adaptable in 
model implementations are preferred over exact and very accurate 
results. It is also very useful in deciphering complex relationships 
between variables, and it possesses a huge tolerance to data 
uncertainty. However, ANN is not without its inherent limitations. 
A major limitation to the use of ANN techniques is the reliance on 
a vast amount of quality historical data which may not be easily 
accessible or obtainable at a fair cost. (Ferrero et al., 2019; Navarro 
and Bennun, 2014). In illustrative examples by Navarro and Bennun, 
(2014), the implied limitation that ANN cannot produce results 
that are as accurate as those obtained by statistical methods when 
stochastic events are involved, seems to have been contradicted by 
the research outcomes of the prediction of flow discharge of a river 
in the work of Fereydooni et al. (2012). Furthermore, some research 
works in certain areas of applications of ANN, indicate that the 
integration of statistical theories and methods with ANN techniques 
have improved the prediction accuracy when stochastic data are 
analyzed, thereby helping to overcome this limitation in those areas 
of applications (Ling et al., 2016; Mosavi et al., 2018; Saglietti et al., 
2018; Samli, 2012; Tran et al., 2019; Wang et al., 2012).

7. APPLICATION OF ANN IN THE ENERGY 
SECTOR

The power industry has been experiencing tremendous 
developments due to the use of AI techniques such as genetic 

algorithm, fuzzy logic, ANN, and expert systems. These techniques 
all present cost-effective developments to the industry. Within the 
framework of AI – machine learning techniques, ANN models have 
produced good outcomes for real-time estimations, particularly 
when dynamic changes in conditions of the environment is to be 
learned as a major factor to increase the accuracy of forecasting 
(Ferrero et al., 2019; Fouilloy et al., 2018). In light of the 
advantages of ANN over other techniques, some of its applications 
in the areas of need in the energy sector are presented in this 
section.

7.1. Identification, Modeling, and Prediction
In an overview of ANNs in the electric power industry presented by 
Bourguet and Antsaklis (1994), projects considered were classified 
into applications of ANN for power plants and applications for 
power systems. Some of the applications of ANN in power plants 
highlighted by the Bourguet and Antsaklis include identification 
and modeling; sensor validation; monitoring and fault diagnosis; 
and control. In power systems, they considered the use of ANN 
for static and dynamic security assessment; transient stability 
assessment; identification, modeling and prediction; control; and 
fault diagnosis. In all of the cases they reviewed, feedforward ANN 
and backpropagation training algorithm were predominantly used. 
Having outlined successful applications of ANN in a representative 
number of research projects in the industry, the duo established 
the strength and applicability of ANN technology to the industry 
and submitted that power systems computing with neural nets 
are taken to be one of the fastest-growing field in power system 
engineering. Acir (2013) studied the use of ANN in performance 
evaluation of a coal-fired thermal power plant. The ANN model 
for forecasting the exergetic efficiency of the plant was developed 
using PHYTICA software with a backpropagation neural network 
based on the Levenberg–Marquardt algorithm. Environmental 
temperature, condenser pressure, and steam pressure were taken 
as input into the network to serve as the performance factors. Out 
of the 27 values of the actual dataset, 2-third was used for the 
network training while a third was randomly selected to test the 
performance of the trained network. Having explored six different 
network structures (3-3-1, 3-4-1, 3-4-5-1, 3-5-4-1, 3-3-4-5-1 and 
3-4-3-4-1), Acir discovered that the 3-3-4-5-1 was the best for the 
plant under study and the novel method will aid both simplified 
and quick calculation of exergetic performance by researchers. 
Chokshi et al. (2018), explored the use of ANN for estimating 
the thermal performance (both energetic and exegetic) of a 210 
MW coal-fired thermal plant as it operates round – the – clock at 
various loads. In the study which was geared toward predicting the 
instantaneous performance and the effect of critical parameters on 
the KWU designed thermal plant, Chokshi et al. (2018) setup sixty-
five ANN models by varying the number of neurons or the spread 
constants in the hidden layer of each of the five ANN architectures 
they considered. The models were trained using actual datasets of 
the plant and were subsequently used to forecast the performance 
of a different KWU plant with equal capacity. Having evaluated 
the error in performance prediction using five different approaches, 
the generalized regression network with spread constant of one, 
was selected and recommended as an appropriate model to 
forecast the performance of a 210 MW KWU power plant under 
varied operational load. Furthermore, it was established that the 
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recommended model is useful for the determination of optimal 
values of various critical parameters for the optimal performance 
of the plant at varied operational load.

Literature on the use of ANN for modeling the highly nonlinear 
relationships among variables connected with emissions resulting 
from combustion of fuels that generate the heat needed to raise 
the enthalpy of water in boilers are also available (Ilamathi et al., 
2013; Ronquillo-Lomeli et al., 2018; Saleh et al., 2015; Sun et al., 
2013; Yusoff and Aziz, 2009). Using ANN, Yusoff and Aziz (2009) 
modeled emissions from the boiler of a palm oil mill that runs 
on shells and fibres which are waste from oil palm processing. 
Fifteen parameters which include shell and fibre flowrates, ambient 
temperature, combustion temperature, flue gas temperature, steam 
temperature, and pressure were taken as input variables for the 
model. These parameters were measured from different locations 
in the plant. The output variables of the model were emissions of 
CO, NOx, SO2, and PM. In comparison to the predicted outputs 
from the Multiple Linear Regression technique, the ANN model 
exhibited more flexibility and accuracy in emission prediction. 
From the viewpoint of Yusoff and Aziz (2009), the ANN models 
developed can effectively predict and monitor pollutant emissions 
from several processes, serve the same purpose as continuous 
emission monitoring system (CEMs) and in terms of operation 
and maintenance, less expensive than CEMs.

7.2. Energy Demand/Load Forecasting
Load forecast is an important reference point for effective power 
planning required for proper management of energy, smooth 
operation and stability of power systems (Babatunde et al., 2018). 
It helps to adequately plan operations, optimize power generation, 
minimize the cost associated with the dispatch of load and serves 
as a guide for planning infrastructural investment required for 
power system expansion (Samuel et al., 2017). A survey of the 
uses of ANN in power industry, especially in the areas of load 
forecasting, economic load dispatch, and security assessment was 
conducted by Mohatram et al. (2011). In comparison with other 
techniques, the survey reveals that ANN is very quick regardless 
of the intricacies of the problems; possesses an extraordinary 
ability for on-line processing and classification; possess massively 
parallel distributed structure and ability to learn; and has the 
capability for implicit nonlinear modeling and automatic filtering 
of system data. On the flip side, determination of the number of 
hidden layers, number of neurons in the hidden layer and the 
time-consuming nature of the process of finding the optimal 
configuration of ANNs are some of the challenging issues of 
ANN mentioned by the researchers. Using ANN, Adepoju et al. 
(2007) performed a short-term load forecast which gives the 
load demand experienced by a utility company in Nigeria based 
on “an hour ahead of time.” Past load data from the Company 
for a period of 1 month were acquired and pre-processed before 
using for the training of the network and the load forecast. The 
network consisted of the input layer, an intermediate layer, and 
the output layer. There were five input variables to the network 
and this corresponds to five neurons for the input layer. A single 
intermediate layer was selected for the network’s topology in order 
to avoid the complexities and tardiness associated with multiple 
intermediate layers. In addition to this, the number of neurons 

in the intermediate layer was varied from five to eleven, before 
eventually employing eleven neurons in that layer (because it 
gave a better model behavior). The variation of the number of 
neurons was to prevent the loss of generalizing ability caused by 
excessive neurons and the inability to learn the characteristics of 
a dataset caused by insufficient neurons in the intermediate layer. 
The network had only one output parameter, which corresponds to 
a single neuron in the output layer. Sigmoid transfer function and 
linear transfer function was used in the intermediate and output 
layer respectively. Supervised training of the network was done 
using data of the first 2 weeks of the month and by supplying the 
input values with the corresponding expected output value. With 
an absolute mean error of 2.54% recorded in load forecast for the 
next 1 h when the network was tested with another week’s load 
data, the ability of the ANN to effectively forecast short-term 
load was confirmed. The results indicate that the neural network 
has been able to learn the nonlinear correlation between the past 
load data presented to it during the training period and effective 
forecasts have been made based on this.

Samuel et al. (2017) carried out a comparative study on the 
medium-term load forecast abilities of ANN and regression models 
using load data from the power station of a teaching-research 
institution in Nigeria. The entire dataset spanning about 184 days 
was partitioned into training, validation and forecast sub-datasets. 
The neural network toolbox in MATLAB was used for the design 
and configuration of the ANN model. A multi-layer perceptron 
(MLP) network with an input layer, two intermediate layers, 
and an output layer was considered in the study. For the ANN 
architecture considered, the input layer consisted of four neurons 
and used the “tansig” function, while the output layer had only a 
neuron and applied the ‘purelin’ function. Using the inputs and 
the expected output, the training of the network was done with a 
variant of the backpropagation learning algorithm known as the 
gradient descent algorithm. Validation of the model was carried 
out by comparing its outputs to those of the validation datasets 
and the parameters of the network were tuned until the best load 
forecasting ANN model was obtained. Taking the root mean square 
error (RMSE) and the mean absolute percentage error (MAPE) as 
the basis of comparison, the load forecast made by the ANN model 
was deemed more accurate than those of the regression models 
(cubic, compound-growth and linear). Whereas the regression 
methods are able to give instant forecast outcomes because they 
simply require direct mathematical calculations, the ANN model 
gives faster load forecast once the training has been completed 
(Samuel et al., 2017).

A survey of methods used in conducting long-term electric load 
forecasts was carried out by Panda et al. (2017). In the survey, 
theoretical features of three parametric methods (trend analysis, 
end-use technique, and econometric technique) and four AI 
centered techniques (ANN, fuzzy logic model, wavelet networks 
and genetic algorithm) were highlighted. In addition to discussing 
the fundamental principles of these methods, the survey reveals 
that the ANN method was the most used computational technique 
for long-term load forecasts in the scenarios considered. ANN-
based models yielded long-term electric load forecasts which are 
close to those of the real data. Furthermore, ANN models were able 
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to overcome the inadequacies of parametric techniques in handling 
nonlinear problems. With lower forecast error relatively to those 
of the parametric methods and other computational intelligence 
methods studied, and the capability to produce satisfactory 
outcomes even when available historical data is low, the ANN 
model was taken to be a superior technique for long-term load 
forecast. Many other works on the use of ANN for electricity 
demand forecasts are available in the literature (Bozkurt et al., 
2017; Buhari and Adamu, 2012; Hernández et al., 2014).

7.3. Monitoring and Fault Diagnosis
Monitoring and diagnosis of faults in rotating equipment such 
as pumps and centrifuge are vital tasks for the smooth running 
of most industrial plants, particularly in power generating plants 
because of the role they play in the prevention of line break-down, 
enhanced efficiency, reliability, and safety of the plant. Continuous 
monitoring has been recommended for early detection of faults in 
order to prevent negative consequences and this can be laborious, 
time-intensive and error-prone when handled by human operators 
(Azadeh et al., 2013). To that end, there has been increased use of 
AI and other machine learning techniques in the development of 
monitoring and fault diagnosis schemes for major plant equipment 
that are prone to fault. Of these machine learning techniques that 
are being explored by researchers, ANNs are the most prevalent. 
Azadeh et al. (2013) proposed a unique flexible algorithm for the 
classification of centrifugal pump conditions. In the proposition 
of the algorithm, two types of faults were classified based on six 
standard pointers (flow, temperature, suction pressure, discharge 
pressure, velocity, and vibration) and the capability of ANN 
model, pure support vector classification (SVC) and hybrid SVC 
were compared in both normal and noisy environments. Based on 
the percentage of fault types predicted correctly, the outcomes of 
the study indicate that support vector machine (SVM) centered 
approaches performed better than the ANN method. However, the 
ANN approach gave better results in comparison with some highly 
appraised methods of classification, such as K-nearest neighbors 
(KNN) and decision tree. A nonparametric statistical test which is 
known as McNemar’s test that was conducted at a 5% significance 
level to determine which model significantly outperformed the other 
further indicates that no statistically significant difference exists 
between the SVC models and ANN model. In addition, Azadeh 
et al. (2013) discovered that although the ANN approach was not 
robust in a noisy environment at all times, it still outperformed 
KNN and decision tree and the calculated performance of the 
proposed flexible algorithm fall within the approved limit. Fast 
and Palme (2010) applied ANN to develop an online condition 
monitoring and diagnosis system for a combined heat and power 
plant (CHP). The online monitoring and diagnosis system for the 
plant involves the creation of ANN models for the component 
equipment making up the plant. These models were integrated 
on the server of the power generation information manager in 
the computer system of the CHP, the graphical user interface was 
accessed through the workstations linked with the server and 
training of the models were done with operating data from the 
plant. The outcomes of the study indicate ease of integration with 
the computer system of the plant and accurate prediction by ANN 
model. As a contribution towards minimization of environmental 
impact and increased reliability, availability and maintainability of 

existing power plants, Fast et al. (2009) developed ANN model for 
an industrial gas turbine and demonstrated the multi-utility of the 
model. The multi-utility ANN model which was built using multi-
layer feed-forward network was trained with operational data by 
means of back-propagation. The outcome of the study revealed the 
possibility of predicting the operative and performance parameters 
(such as identification of anti-icing mode) of gas turbine with good 
precision at various local environmental temperature. According 
to Fast et al. (2009), the multi-utility ANN model developed is 
suitable for offline performance simulation of the gas turbine; online 
monitoring of the condition of the turbine for prompt fault detection 
and prevention of degradation and; can also serve the purpose 
of sensor validation. With the aid of a graphical user interface, 
the model was able to give instantaneous estimations of the gas 
turbine performance. Asides from being able to give good results 
of extrapolated data beyond the range of the training data, the chief 
importance of the ANN model was the effectiveness in detecting 
compressor fouling which helped optimized the wash interval of 
the compressor (Fast et al., 2009). Having posited that a monitoring 
system consists of several elements, and divers factors determine 
the ultimate diagnostic precision, Loboda (2016) conducted 
investigations based on the gas path of gas turbine to underpin the 
author’s position on precision in monitoring of systems. Faults 
of components were simulated using gas turbine thermodynamic 
model; diagnostic information was extracted from raw operating 
data by computing the deviance of each variable being monitored 
from the reference values; and a number of ANN-based networks 
alongside KNN and support vector network (SVN) were considered 
for fault classification, fault diagnosis, and turbine monitoring. The 
outcome of the study includes proposition and proving of methods 
for increased accuracy of diagnosis; and recommendations on 
selecting and adapting the networks for various diagnostic tasks. 
More literature on monitoring and fault diagnosis in gas turbines, 
and other energy systems and components are vastly available 
(Dybkowski and Klimkowski, 2019; Palmé et al., 2011; Patel and 
Shah, 2018; Simani and Fantuzzi, 2000).

Timely discovery and diagnosis of boiler trips have been 
prescribed for continued safe operation and as an antidote to 
unnecessary hike in the operating cost of thermal power plants. 
This assertion formed the basis of the research on an intelligent 
cautionary scheme for boiler tube leak trips conducted by Singh 
et al. (2017). This research which focused on obtaining an 
intelligent scheme capable of optimal prediction of boiler trips 
considered three actual cases of thermal power plant boiler tube 
leak trip. Two intelligent cautionary schemes were proposed; 
the first was a pure ANN-based scheme which was trained using 
extreme learning machine (ELM) algorithm and the other scheme 
was a hybridized system of ANN and genetic algorithm which 
was also trained using ELM method. The proposed schemes 
were validated with actual faulty data and in all the three cases 
considered, the prompt discovery of boiler tube leak trips was 
achieved. The pure ANN-based intelligence scheme detected leak 
trip earlier than the hybrid intelligent scheme. On the other hand, 
the hybrid intelligent scheme was taken to be the more reliable 
scheme because of the optimization capability of the genetic 
algorithm. Furthermore, the Root Mean Square Error in all the trip 
cases were lesser and was therefore considered to outperform the 
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pure ANN cautionary scheme. Alnaimi and Al-Kayiem (2011) also 
worked on fault diagnosis in a boiler of a power plant by focusing 
on monitoring the superheater through an AI scheme. The research 
involved the development of ANN models for detection of faults 
and diagnosis. With regards to superheater monitoring, the most 
impelling parameters contributing to low-temperature trip in boiler 
were determined by studying the boiler behavior and thirty-two 
parameters were selected. One invisible-layer and two invisible-
layer ANN architectures were explored and feed-forward back-
propagation was basically used for the neural network training. 
Since the deployed training algorithm has several variations based 
on the minimization algorithm used for minimizing error in the 
error estimator, four kinds of variants were studied. The outcomes 
of the exploration show that superheater low temperature can be 
promptly and accurately detected with satisfactory performance 
using the models developed.

7.4. Control
In implementing control, an accurate model of the process is a 
requirement. Data-actuated models are handy in representing 
a particular process when it is difficult to develop knowledge-
actuated simulation models if an ample amount of data depicting 
the process is at disposal (Solomatine et al., 2009). Major data-
driven modeling paradigm includes neural networks, fuzzy-based 
and genetic algorithm systems. ANN has been recognized as an 
invaluable tool that can support the effective development of data-
actuated models for even extremely nonlinear and multivariable 
systems (Al Seyab and Cao, 2008; Cao et al., 2008). ANN can 
learn complex functional relations for a system from the input and 
output data of the system (Liptak, 2018).

In a comparative study done on tuning a PID controller by Srinivas 
et al. (2014), intelligent methods have been reported to give a 
prompt response with lesser peak overshoot and integral square 
error when juxtaposed with Ziegler-Nichols and Cohen-Coon 
methods (Srinivas et al., 2014). Out of the intelligent methods 
explored by these researchers, ANN-tuning turned out to be the 
best. Al Fayiz (2017), designed, tested and assessed a model 
based on an adaptive neural network algorithm for the purpose of 
controlling a nuclear power plant. The results of the assessment 
indicate that in contrast to traditional methods of control, the 
understudied adaptive algorithm is capable of substantially 
improving the control quality of the automatic power control 
system. Manke and Tembhurne (2012), also developed and tested 
an ANN-based drum level controller for boilers of thermal power 
plants. The aim of developing the ANN-based controller was to 
considerably minimize the cases of failure of boiler tubes caused 
by tube overheating (when water level suddenly drops), difficulty 
in moisture-steam separation & reduced boiler efficiency (caused 
by rise in water level), and the associated boiler & turbine trips; 
plant shutdown, forfeiture of power generation and loss of income. 
The controller prototype developed has a simple structure and is 
based on a simple algorithm. The learning samples were empirical 
data from a 500 MW coal-fired power plant and was trained using 
backpropagation technique. When applied to control the drum 
level in a thermal power plant, the developed ANN controller 
was able to overcome the limitations of the existing PI controller. 
The better performance and prospect of handling complex process 

control-related problems make the ANN-based controller highly 
promising for process-control applications. Anead et al. (2018), 
Also conducted research on the use of ANN-based control for 
boiler damage prevention. ANN controller was designed with 
operational data obtained from an industrial steam power plant. 
The data consisting of parameters that have been identified to 
have a significant influence on the performance of the boiler were 
trained using backpropagation algorithm. The purpose of the 
training was to enable the controller to make right decision for 
the control of the boiler. The off-line control of thermal variables 
was implemented using simulink in MATLAB and the outcome 
indicate that the highest deviation of the predicted input variables 
from the experimental optimum value was below 0.01.

7.5. Optimization
Optimization techniques centered on ANNs, fuzzy logic, genetic 
algorithms, and some other computational intelligence approaches 
have been identified as being capable of producing good results in 
adverse situations where data is not precise, noisy and inconsistent 
(Kumar and Karimi, 2015). In a bid to improve on clean and 
efficient use of coal for electricity generation, Ilamathi et al. 
(2012) combined ANN with simulating annealing (SA) to obtain 
optimum combustion parameters that minimize the emission of 
oxides of nitrogen (NOx) from coal combustion. In the study, 
ANN served as an effective tool for mapping the nonlinear input-
output relationship, which yielded the fitness function between the 
input operating variables and NOx emission. This fitness function 
provided by the ANN served as the objective function which SA 
utilized in searching for the optimum operating parameters to meet 
the required low level of NOx emission. The implementation of 
both the ANN modeling and simulated annealing was carried out 
with MATLAB R2011a. Data for the modeling and optimization 
study was obtained from the experiment in which a number of 
operating parameters were varied and their effect on the level of 
NOx emissions of a 210 MW thermal power plant operated at full 
load was investigated. The ANN which deciphered the nonlinear 
relationship between the operating variables and NOx emitted had 
9 neurons (corresponding to 9 parameters) at the input layer, 10 
neurons and 10 biases at the intermediate layer, and 1 neuron and 
1 bias at the output layer. The “transig” function and “purelin” 
function were used to compute the sum of the weighted inputs 
and bias(es) at the intermediate and output layer respectively. 
To derive the fitness function, the network was trained using 
feedforward backpropagation. A comparison of the NOx emissions 
level predicted by the trained network to those of the measured 
ones shows that the network performed considerably well. The 
optimum solution which SA obtained by using the fitness function 
derived from ANN reveals that a combination of ANN and SA can 
be used to generate realistic operational conditions that optimize 
coal combustion with respect to NOx emission reduction.

As concerns are increasingly being raised about the devastating 
effects of greenhouse gases emitted into the environment from 
various sources and anthropogenic activities, considerable research 
efforts are being geared towards reducing the contribution of 
landfills to the non-CO2 greenhouse gases released into the 
environment. This is mostly achieved by harnessing the biomethane 
obtainable from landfill gas as a form of renewable energy for 
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power generation (Denwigwe et al., 2019; Ighravwe and Babatunde, 
2019). A research on the optimization of biomethane production 
from a biogas plant located near a landfill, using the combination of 
ANN model and genetic algorithm model was carried out by Qdais 
et al. (2010). The plant’s operative data over a period of 177 days 
were acquired and preprocessed in preparation for the study. Using 
the preprocessed data, a multi-layer ANN having two hidden layers, 
each with 25 neurons and sigmoid activation function was used 
to determine the nonlinear impacts of reactor temperature, total 
solids, total volatile solids and pH on the quantity of biomethane 
produced by the plant’s digester. Backpropagation training of the 
network was implemented in MATLAB. The validation of the ANN 
model designed was done using a set of 50 days’ operative data 
that were not previously used for the training of the network. The 
network was deemed to have been adequately trained, as the ANN 
model effectively predicted the production of biomethane with a 
correlation coefficient of 0.87. The output of the ANN model was 
used in computing the values of the fitness function for the genetic 
algorithm routine. Hence, the optimum combination of parameters 
(based on the four input variables) for operating the digester of the 
biogas plant was identified through the integration of the ANN 
model and the GA model. These optimum conditions led to a 6.9% 
increase in the yield of methane as compared with the maximum 
yield obtained with the current operative parameters. Kana et al. 
(2012) also studied the use of ANN and genetic algorithm for 
the optimized production of biogas from a combination of five 
different substrates. Data from twenty-five mini-pilot biogas 
fermentations were acquired and preprocessed for the study. Using 
the Neurosolution software, the ANN was structured in a way that 
it had 5 input nodes, a single hidden layer with 2 neurons, and 1 
output node; and the sigmoid transfer function was adopted in the 
processing elements. Eighty percent of the biogas fermentation 
data was used for the training of the neural network using the 
backpropagation approach. Having been successfully trained with 
the concentration datasets of the five substrates, validation of the 
ANN model for prediction of the digester’s performance index was 
done with the remaining data. After the validation of the model, 
it was used as the objective function for the process of genetic 
algorithm optimization. The implementation of the optimization 
using genetic algorithm was done with Pro-optimizer software. This 
yielded an optimum profile which resulted in an 8.64% increase 
in biogas production and the initialization of biogas production 
on day 3 of fermentation as against day 8 in the non-optimized 
system. In other words, the experimental evaluation of the results 
obtained from the modeling and optimization study confirmed that 
the integration of ANN and GA models can efficiently be used to 
optimize the non-linear biogas production process.

8. CONCLUSION

The energy sector is faced with multifarious challenges that can 
no longer be adequately tackled with conventional approaches 
and tools only. The computational strengths of several artificial 
intelligent schemes have been proven to be veritable tools in 
providing new and effective ways of handling a lot of the existing 
and emerging challenges faced by the sector. By dint of the 
adaptive nature of the ANN learning procedures, and in relation 
to other artificial computational schemes, ANN is deemed an 

extra-powerful tool and the most explored technique in solving 
problems in the energy sector.

The ANN has gone through several developmental stages and its 
development is still ongoing. The highlights provided in this survey 
unveils its robustness in effectively handing problems extending 
from modeling, prediction, load forecast, fault detection, monitoring 
to control, in different areas of the energy sector. In cases where its 
lone ability is insufficient, the combinative strength drawn from its 
integration with other computational intelligence schemes cannot be 
downplayed as in the scenarios of optimization cited in this review.
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