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ABSTRACT

In this paper, we employ asymmetric multivariate GARCH approaches to examine their performance on the volatility interactions between global crude 
oil prices and seven major stock market indices. Insofar as volatility spillover across these markets is a crucial element for portfolio diversification 
and risk management, we also examine the optimal weights and hedge ratios for oil-stock portfolio holdings with respect to the results. Our findings 
highlight the superiority of the asymmetric BEKK model and the fact that the choice of the model is of crucial importance given the conflicting results 
we got. Finally, our results imply that oil assets should be a part of a diversified portfolio of stocks as they increase the risk-adjusted performance of 
the hedged portfolio.

Keywords: Asymmetry, Multivariate GARCH, Stock Market, Oil Price, Volatility Spillover 
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1. INTRODUCTION

Over the past years, the stock markets and crude oil markets have 
developed a reciprocal relationship. Every production sector in the 
international economy depends on oil as an energy source. Based 
on such dependence, fluctuations in oil price and its volatility 
are likely to affect the production sector and the international 
economy in general. Mork (1989) and Hooker (1999) documented 
that there is a significant negative relationship between crude oil 
price increases and world economic growth. Given that negative 
relationship, one would expect that increases in crude oil market 
prices will affect the firms’ earnings and hence their stock price 
levels. Subsequently, the linkage between crude oil price volatility 
and stock markets seems to be quite evident. Many relevant 
studies such as Sadorsky (1999; 2001; 2006), Papapetrou (2001), 
Ewing and Thompson (2007) and Aloui and Jammazi (2009) 
conclude that a change in oil prices of either sign may affect 
stock price behavior. For this reason, investors should be aware 

of how shocks and volatility are transmitted across markets over 
time. Also, the increased financial integration between countries 
and the financialization of oil markets can enhance the ways of 
diversification of investors’ portfolios. In order to take advantage 
of these ways, investors require a better understanding of how 
financial and oil markets correlate. By modeling volatility, 
researchers can produce accurate estimates of correlation and 
volatility which are key elements in developing optimal hedging 
strategies (see, for example, Chang et al. (2011)). Supporters of 
investing in commodities (mostly in oil) claim that if commodities 
have low or even negative correlations with stocks then a portfolio 
that includes commodities should perform better than a portfolio 
that excludes commodities (Sadorsky, 2014). This suggests that 
adding oil to an equity portfolio may lead to higher returns and 
lower risk than just investing in equities.

Since the development of the univariate ARCH model by Engle 
(1982) and GARCH model by Bollerslev (1986), an important 
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body of literature has focused on using these models to model the 
volatility of oil and stock market returns. Furthermore, in the last 
decade, with the generalization of the univariate into multivariate 
GARCH models, the literature has focused on the volatility 
spillovers between oil and stock markets.

This paper makes several important contributions to the literature. 
First, while existing papers investigate the volatility dynamics 
between stock prices and oil prices, most of this literature focuses 
on individually developed economies, the Gulf Cooperation 
Council (GCC) countries or the BRICS (see, for example, Malik 
and Hammoudeh (2007); Arouri et al. (2011b); Creti et al. (2013)). 
This paper is specifically focused on the volatility dynamics 
between the G7 stock market prices and the Brent which is the 
global oil benchmark for light, sweet crudes. The choice of these 
countries is based on their importance to the global economy. 
For example, in 2017, according to worldstopexports.com the 
U.S. accounted for 15.9% of total crude oil imports and summing 
these percentages, the G7 countries accounted for 36.9% of total 
crude oil imports. Moreover, among the G7 countries, Canada 
is considered as an oil-exporter, so a slight distinction between 
oil -importers and -exporters can be made, adding this paper to 
the limited studies which make that kind of distinction (see, for 
example, Park and Ratti (2008); Apergis and Miller (2009); Filis 
et al. (2011)). Second, this paper differs from previous studies 
by comparing the performance of three asymmetric multivariate 
GARCH models namely, the ABEKK model of Kroner and 
Ng (1998), the AVARMA-CCC-GARCH model of McAleer et 
al. (2009) and the AVARMA-DCC-GARCH model which is a 
combination of the AVARMA-GARCH model of McAleer et al. 
(2009) and the DCC model of Engle (2002) in order to study the 
volatility spillover effects between developed stock market prices 
and oil prices. These models can simultaneously estimate the 
volatility cross-effects for the stock market indices and oil prices 
under consideration. In addition, these models can capture the 
effect of own shocks and lagged volatility on the current volatility, 
as well as the volatility transmission and the cross-market shocks 
of other markets.

The aim of this paper is to investigate the joint evolution of 
conditional returns, the correlation and volatility spillovers 
between the crude oil returns, namely Brent and the stock index 
returns of the G7 countries, namely CAC40 (France), DAX 
(Germany), DJIA (U.S.), FTSE100 (U.K.), MIB (Italy), Nikkei225 
(Japan) and TSX (Canada). The asymmetric bivariate GARCH 
models are estimated using weekly return data from January 14, 
1998, to December 27, 2017. A complementary objective is to use 
the estimated results to compute the optimal weights and hedge 
ratios that minimize overall risk in portfolios of each G7 country. 
Our results are crucial for building an accurate asset pricing model 
and forecasting volatility in stock and oil market returns.

The remainder of the paper is organized as follows. Section 2 
reviews the literature. Section 3 describes the three asymmetric 
multivariate GARCH models. Section 4 presents the data and 
descriptive statistics. Section 5 discusses the empirical results 
and provides the economic implications for optimal portfolios 
and optimal hedging strategies. Section 6 concludes the paper.

2. LITERATURE REVIEW

This section presents a short literature review of papers that focus 
directly on the volatility dynamics between oil prices and stock 
markets. Malik and Hammoudeh (2007) investigate the volatility 
transmission between the global oil market (WTI), the U.S. 
equity market (S&P 500) and the Gulf equity market of Kuwait, 
Bahrain and Saudi Arabia. They use daily data from 14 February 
1994 to 25 December 2001 and find evidence of bidirectional 
volatility spillovers only in the case of Saudi Arabia. Malik and 
Ewing (2009) use bivariate BEKK models to estimate volatility 
transmission between oil prices and five U.S. sector indices 
(Financial, Industrials, Health Care, Technology, and Consumer 
Services). Their results suggest significant transmission of shocks 
and volatility between oil prices and some of the examined market 
sectors. Choi and Hammoudeh (2010) investigate the time-
varying correlation between the S&P500 and oil prices (Brent and 
WTI), copper, gold, and silver. They find decreasing correlations 
between the commodities and the S&P500 index since the 2003 
Iraq war. Vo (2011) examines the inter-dependence between 
crude oil price volatilities (WTI) and the S&P500 index over the 
period 1999-2008. The author supports that there is inter-market 
dependence in volatility. Arouri et al. (2011a) employ bivariate 
GARCH models using weekly data from 01 January 1998 to 31 
December 2009 to examine volatility spillovers between oil prices 
and stock markets in Europe and United States at the sector-level. 
They find a bidirectional spillover effect between oil and U.S. 
stock market sectors and a univariate spillover effect from oil to 
stock markets in Europe. Arouri et al. (2011b) study the return and 
volatility transmission between oil prices and stock markets in the 
Gulf Cooperation Council (GCC) countries over the period 2005 
and 2010. They use the VAR-GARCH approach to conclude that 
there are spillovers between these markets. Arouri et al. (2012) 
investigate volatility spillovers between oil and stock markets in 
Europe. They use weekly data from January 1998 to December 
2009 and a bivariate GARCH model. They find evidence of 
volatility spillovers between oil prices and stock market prices. 
Chang et al. (2013) employ multivariate GARCH models to 
investigate conditional correlations and volatility spillovers 
between oil prices and the stock prices of the U.S. and U.K. Their 
findings provide little evidence of volatility spillovers between 
these markets. Mensi et al. (2013) use bivariate VAR-GARCH 
models to study volatility transmission between S&P500 and 
energy price indices (WTI and Brent), among other commodities, 
over the period 2000 and 2011. Their results suggest significant 
transmission among the S&P500 and commodity markets, while 
the highest conditional correlations are between S&P500 and gold 
index and between the S&P500 and WTI index. Bouri (2015) 
studies four MENA countries, namely Lebanon, Jordan, Tunisia, 
and Morocco over the period 2003-2013. His results suggest that 
in the pre-financial crisis period there is no volatility transmission 
between oil and stock markets of MENA countries. However, 
some evidence of linkages is revealed in the post-financial crisis 
period but not for all countries. Du and He (2015) examine the 
risk spillovers between oil (WTI) and stock (S&P500) markets 
using daily data from September 2004 to September 2012. Their 
findings suggest that in the pre-financial crisis period, there are 
positive risk spillovers from the stock market to the oil market 
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and negative spillovers from oil to the stock market. In the 
post-financial crisis period, bidirectional positive risk spillovers 
are reported. Khalfaoui et al. (2015) is one of the extremely 
limited studies focusing on G7 countries. They investigate the 
linkage of the crude oil market (WTI) and stock markets of 
the G7 countries using a combination of multivariate GARCH 
models and wavelet analysis. They find strong volatility spillovers 
between oil and stock markets and that oil market volatility is 
leading stock market volatility. Phan et al. (2016) examine the 
price volatility interaction between the crude oil (WTI) and equity 
markets in the U.S. (S&P500 and NASDAQ) using intraday data 
over the period 2009 and 2012. They claim that even in the future 
markets there are cross-market volatility effects. Ewing and 
Malik (2016) use univariate and multivariate GARCH models 
to investigate the volatility of oil prices (WTI) and U.S. stock 
market prices (S&P500). They use daily data over the period from 
July 1996 to June 2013 and take into account structural breaks. 
Their results show no volatility spillover between these markets 
when structural breaks are ignored. However, after accounting 
for breaks, they find a significant volatility spillover between oil 
prices and the U.S. stock market.

The next few studies are focused on oil-exporting and oil-importing 
countries. Park and Ratti (2008) use monthly data for 13 European 
countries and the U.S. over the period 1986:1-2005:12. They 
find that positive oil price shocks cause positive returns for the 
stock market of the oil-exporting country (Norway), however, the 
opposite occurs for the rest of the European countries but not for 
the U.S. (oil-importers). Apergis and Miller (2009) use monthly 
data for the G7 countries and Australia to conclude that major 
stock market (independently of oil-exporting or oil-importing) 
returns do not respond in oil market shocks. Filis et al. (2011) 
employ multivariate DCC-GARCH-GJR models to investigate 
the time-varying correlation between oil prices and stock prices 
of oil-exporting (Brazil, Canada, and Mexico) and oil-importing 
(U.S.A., Germany, and Netherlands) countries. They find, among 
others, that the time-varying correlation does not differ between 
oil-importing and oil-exporting countries. Maghyereh et al. (2016) 
utilize 3 oil-exporting and 8 oil-importing countries over the 
period 2008-2015. Their findings support that oil price volatility 
is the significant transmitter of volatility shocks to stock market 
volatilities and that there is no difference between oil-importers 
and oil-exporters.

3. ECONOMETRIC METHODOLOGY

Since the objective of this paper is to investigate volatility 
interdependence and transmission mechanisms between 
stock and oil markets, multivariate frameworks such as the 
AVARMA-CCC-GARCH model of McAleer et al. (2009), 
the AVARMA-DCCGARCH and the ABEKK-GARCH model 
of Kroner and Ng (1998) are more relevant than univariate 
GARCH models. The first model assumes constant conditional 
correlations, while the last two accommodate dynamic 
conditional correlations. Combined with a vector autoregressive 
(VAR) model for the mean equation, they allow us to examine 
returns spillovers too. In what follows we present the bivariate 
framework of these three models.

The econometric specification has two components, a mean 
equation, and a variance equation. The first step in the bivariate 
GARCH methodology is to specify the mean equation. For 
each pair of stock and oil returns, we try to fit a bivariate VAR 
model. For example, a bivariate VAR(1) model has the following 
specification for the conditional mean1:

   1 −= + Ψ +t t tr r u  (1)

where rt= (rs,t, ro,t)′ is the vector of returns on the stock and oil 
price index, respectively. Ψ refers to a 2 × 2 matrix of parameters 

of the form 
 
 
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Ψ =   
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os oo
. u t= (us,t, uo,t)′ is the vector of the 

error terms of the conditional mean equations for stock and oil 
returns, respectively.

The asymmetric BEKK model proposed by Kroner and Ng (1998) 
is an extension of the BEKK model of Engle and Kroner (1995). 
Their difference is one extra matrix that takes into account the 
asymmetries. Its equation has the following form:
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where C is a 2 × 2 upper triangular matrix, A is a 2 × 2 square matrix 
of coefficients and shows the extent to which conditional variances 
are correlated with past squared errors. B is also a 2 × 2 square matrix 
of coefficients and reveals how current levels of conditional variances 
are related to past conditional variances. D is a 2 × 2 matrix and v 
is defined as u if u is negative and zero otherwise. For example, a 
statistically significant coefficient on dss would indicate that the “bad” 
news of the first variable affects its variance more than the “good” 
news of the same magnitude. Moreover, it should be mentioned 
that if the D matrix is zero then the ABEKK model reduces to the 
simple BEKK model. The ABEKK model has the property that the 
conditional variance-covariance matrix is positive definite. However, 
this model suffers from the curse of dimensionality (for more details 
see McAleer et al. (2009)). The following likelihood function is 
maximized assuming normally distributing errors:

 
( ) ( ) ( )1
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1 The appropriate lag length of the VAR models was chosen on the basis of 
the Schwarz information criterion (SIC).
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where T is the number of observations and θ refers to the parameter 
vector to be estimated. Numerical maximization techniques 
were employed to maximize this log-likelihood function. As 
recommended by Engle and Kroner (1995) several iterations 
were performed with the simplex algorithm to obtain the initial 
conditions. Then, the Broyden (1970), Fletcher (1970), Goldfarb 
(1970) and Shanno (1970) algorithm (BFGS) was employed to 
obtain the estimate of the variance-covariance matrix and the 
corresponding standard errors2.

We now shift our attention to another class of GARCH 
specifications that model the conditional correlations rather than 
the conditional covariance matrix Ht. In order to take into account 
asymmetries and interdependencies of volatility across different 
markets, McAleer et al. (2009) proposed the AVARMA-CCC-
GARCH(1,1) model which has the following specification in its 
bivariate form for the conditional variances-covariance:

h c a u b h a u b h d Is t ss ss s t ss s t so o t so o t ss t, , , , ,
= + + + + +− − − − −1

2

1 1

2

1 1
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where Iu is defined as follows:
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The volatility transmission between stock and oil markets over 
time is captured by the cross values of error terms ( uo t, −1

2  and 

us t, −1
2 ) and the lagged conditional volatilities (ho,t−1) and (hs,t−1). 

The error terms gauge the impact of direct effects of shock 
transmission, while the lagged conditional variances measure the 
direct effects of risk transmission across the markets. In other 
words, the conditional variance of the stock market depends not 
only on its own past values and its own innovations but also on 
those of the oil market and vice versa. Hence, this model allows 
shock and volatility transmission between the oil and stock markets 
under consideration. As it is clear if the dii are simultaneously zero, 
then the AVARMA-CCC model reduces to a VARMA-CCC model 
and if the elements aij and bij (i≠j) are also zero then the model 
becomes the simple Constant Conditional Correlation (CCC). Ling 
and McAleer (2003) proposed the quasi-maximum likelihood 
estimation (QMLE) to obtain the parameters of the above bivariate 
model, which is appropriate when, ηt does not follow a joint 
multivariate normal distribution.

Our last model is a combination of the AVARMA-GARCH model 
of McAleer et al. (2009) and the DCC model of Engle (2002). 
This model is estimated in two steps simplifying the estimation 

2 Quasi-maximum likelihood estimation was used and robust standard errors 
were calculated by the method given by Bollerslev and Wooldridge (1992).

of the time-varying correlation matrix. In the first step, the 
AVARMA-GARCH(1,1) parameters are estimated. In the second 
step, the conditional correlations are estimated. It has the same 
equation as the AVARMA-CCC-GARCH(1,1) model with an 
exception that the conditional covariance is not constant.

   H L R Lt t t t=  (9)

In the bivariate form, Ht is a 2 × 2 diagonal conditional covariance 
matrix, Lt is a diagonal matrix with time-varying standard 
deviations on the diagonal and Rt is the conditional correlation 
matrix.

   L diag h ht s t o t= ( ),

/

,

/
,

1 2 1 2  (10)
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The expressions hs,t and ho,t are univariate GJR models of 
Glosten et al. (1993) with VARMA specification which is equal 
to an AVARMA specification (see, equations (5) and (6)). Qt is a 
symmetric positive definite matrix.

 ( ) '
1 2 1 1 1 2 11    − − −= − − + +t t t tQ Q z z Q  (12)

Q  is a 2 × 2 unconditional correlation matrix of the standardized 
residuals , , , , ( / )  =i t i t i t i tu h . The parameters θ1 and θ2 are non-
negative. The model is mean-reverting as long as θ1 + θ2< 1. The 
matrix Qt does not replace Ht, its purpose is to provide conditional 
correlations ρso,t.

   

,
,

, ,
 = so t

so t
ss t oo t

q
q q  (13)

Hence, for the conditional covariance equation, we end up in the 
following expression

   , , ,=so t t s t o th h h  (14)

which is the only difference from the AVARMA-CCC-
GARCH(1,1) model. The AVARMA specification on the CCC 
and DCC models allows for spillovers among the variances of the 
series, and also makes the DCC form almost identical to that used 
for the ABEKK model, allowing for direct comparisons of model 
performance (Efimova and Serletis, 2014). In addition, permitting 
for asymmetries in the models provides valuable information to 
policy-makers and financial market participants, on the existing 
differences between the impact of positive and negative news on 
stock and oil market price fluctuations. The fact that asymmetric 
effects are significant depicts potential misspecification if 
asymmetries are neglected.

4. DATA AND PRELIMINARY RESULTS

For this study, weekly data on the Wednesday closing prices 
for crude oil and stock indices were used. Crude oil includes 
one of the two global light benchmarks, namely the Europe 
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Brent. The series for oil prices were obtained from the Energy 
Information Administration (EIA). The stock market indices are 
Dow Jones Industrial Average (United States), CAC40 (France), 
DAX (Germany), FTSE MIB (Italy), Nikkei225 (Japan), 
FTSE100 (United Kingdom) and S&P/TSX (Canada). This 
data3 was obtained from Yahoo Finance. The data4 range spans 
from 07 January 1998 to 27 December 2017 for a total of 1043 
observations. Wednesday closing prices were used because in 
general there are fewer holidays on Wednesdays than on Fridays. 
Any missing data on Wednesday closes was replaced with closing 
prices from the most recent successful trading session. The use of 
weekly data significantly reduces any potential biases that may 
arise such as the non-trading days, bid-ask effect etc. Consistent 
with other studies, our analysis focuses on the returns as the price 
series were non-stationary in levels. Stock market and oil price 
returns are computed as the first log-difference, i.e. rt = 100 × ln 
(Pt⁄Pt−1), where Pt is the weekly closing price. The summary for 
the corresponding returns, as well as the unit root tests and the 
Ljung and Box (1978) statistics, are shown in Table 1.

All the series have a positive mean except for MIB and for each 
series, the standard deviation is larger than the mean value. 
As measured by the standard deviation, equity market return 
unconditional volatility is highest in Italy, followed by Germany, 
Japan, France, U.K., Canada, and the U.S., while the oil price 
volatility is the highest among them all. In terms of skewness, 
each series displays negative skewness and a large amount of 
kurtosis, a fairly common occurrence in high-frequency financial 
data which implies that the GARCH model of Bollerslev (1986) is 
adequate. In addition, the null hypothesis of normality is rejected 
for all return series by the Jarque and Bera (1980) test statistic at 
1% level of significance. The (squared) Q-statistic of Ljung and 
Box (1978) which is used for detection of (heteroskedasticity) 
autocorrelation is significant in all cases, implying that the past 
behavior of the market may be more relevant. The Augmented 
Dickey and Fuller (1979; 1981) unit root tests indicate that all 
the return series are stationary at the 1% level of significance. 
The unconditional correlations of all stock indices with the Brent 
crude oil are positive, yet not high. Figures A1 and A2 exhibits 

3 Indices’ codes in the corresponding database, U.S.-ˆDJI, France-ˆFCHI, 
Germany-ˆGDAXI, Italy-FTSEMIB.MI, Japan-ˆN225, U.K.-ˆFTSE, 
Canada-ˆGSPTSE, Europe Brent spot price FOB-RBRTE. 

4 Oil prices are measured in U.S. dollars per barrel, however stock prices are 
in national units.

the evolution of the closing prices and the returns series during the 
period of the study. The oil series recorded sample high in 2008 
and it is clear that it is the most volatile series.

5. EMPIRICAL RESULTS

This section reports on the empirical results obtained from the 
estimating bivariate GARCH models. Empirical results are 
presented for our three competitive models: ABEKK-GARCH(1,1), 
AVARMA-CCC-GARCH(1,1) and AVARMA-DCC-GARCH(1,1) 
in Tables A1-A7 (in Appendix). In order to compare their 
performance on the volatility spillover effects, we will interpret 
their estimates using Wald tests (Tables 2-4). We focus on 
statistical significance at the 5% level. Wald test is used to test 
the matrix elements of the volatility spillover effect, which is 
the joint test for the significance of the model coefficients (see, 
Beirne et al. (2010); Liu et al. (2017)). We test the following two 
set of hypotheses:

Η0: aso= bso= 0 or there is no volatility spillover from oil to stock 
 (15)

Η1: aso≠ 0 or bso≠ 0 or there is volatility spillover from oil to stock
 (16)

Η0: aos= bos= 0 or there is no volatility spillover from stock to oil 
 (17)

Η1: aos ≠ 0 or bos ≠ 0 or there is volatility spillover from stock to 
oil (18)

In addition, implications of the results on optimal weights and 
hedge ratios for oil-stock portfolio holdings are depicted in Table 5.

First, we have to determine the mean equations. As it is apparent 
from Table 6, the Schwarz information criterion indicates not to 
use a VAR framework. Hence, the mean equations for all pairs 
will consist of just a constant for each series. Therefore, we cannot 
seek for mean spillover effects among the markets.

Regarding the variance equations and the CAC40 index (Tables A1 
and 2-4), we find that each model provides evidence of conditional 
GARCH (significant coefficients on bss and boo) effects in stock 
and oil’s variance equations meaning that each current volatility 

Table 1: Descriptive statistics
Obs. 1042 CAC40 DAX DJIA FTSE100 MIB Nikkei225 TSX BRENT
Mean 0.056 0.106 0.110 0.036 −0.015 0.040 0.086 0.141
St. dev. 3.077 3.272 2.229 2.418 3.322 3.099 2.270 5.118
Skewness −0.317 −0.632 −0.586 −0.310 −0.411 −0.466 −0.760 −0.117
Kurtosis 6.207 6.386 7.494 6.253 4.833 6.326 6.453 4.645
Jarque-Bera 467.47* 571.08* 942.27* 479.46* 176.8* 521.58* 621.82* 121.09*
Q(24) 49.10* 32.01 39.71** 38.01** 44.33* 50.30* 49.09* 27.65
Q2(24) 318.13* 261.44* 245.44* 320.94* 286.09* 117.32* 355.85* 354.10*
ADF −37.40*(0) −35.43*(0) −33.07*(0) −35.74*(0) −34.42*(0) −33.06*(0) −32.69*(0) −31.81*(0)
Corr. with brent 0.214 0.195 0.185 0.222 0.241 0.183 0.353 1.000
∗, ∗∗ indicate statistical significance at 1% and 5% respectively. The numbers within parentheses followed by ADF statistics represent the lag length of the dependent variable used to 
obtain white noise residuals. The lag lengths for ADF equations were selected using the Schwarz Information Criterion (SIC). MacKinnon (1996) critical values for rejection of the 
hypothesis of unit root applied. Q(24) and Q2 (24)are the Ljung and Box (1978) statistics for serial correlation and conditional heteroskedasticity of the series at 24th lag
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Table 2: Wald tests for volatility spillover effects with the 
ABEKK model

H0 Wald Sig. Conclusion
CAC40 aso=bso=0 7.951 0.019 Spillover from Brent to 

CAC40
aos=bos=0 11.086 0.004 Spillover from CAC40 

to Brent
DAX aso=bso=0 4.024 0.134 No spillover from Brent 

to DAX
aos=bos=0 13.776 0.001 Spillover from DAX to 

Brent
DJIA aso=bso=0 10.544 0.005 Spillover from Brent to 

DJIA
aos=bos=0 29.538 0.000 Spillover from DJIA to 

Brent
FTSE100 aso=bso=0 11.084 0.004 Spillover from Brent to 

FTSE100
aos=bos=0 13.146 0.001 Spillover from 

FTSE100 to Brent
MIB aso=bso=0 9.813 0.007 Spillover from Brent to 

MIB
aos=bos=0 25.814 0.000 Spillover from MIB to 

Brent
Nikkei225 aso=bso=0 6.211 0.045 Spillover from Brent to 

Nikkei225
aos=bos=0 5.221 0.074 No spillover from 

Nikkei225 to Brent
TSX aso=bso=0 6.680 0.035 Spillover from Brent to 

TSX
aos=bos=0 13.887 0.001 Spillover from TSX to 

Brent

Table 3: Wald tests for volatility spillover effects with the 
AVARMA-CCC model

H0 Wald Sig. Conclusion
CAC40 aso=bso=0 2.481 0.289 No spillover from Brent to 

CAC40
aos=bos=0 1.629 0.443 No spillover from CAC40 

to Brent
DAX aso=bso=0 2.444 0.295 No spillover from Brent 

to DAX
aos=bos=0 2.022 0.364 No spillover from DAX 

to Brent
DJIA aso=bso=0 2.314 0.314 No spillover from Brent 

to DJIA
aos=bos=0 1.136 0.567 No spillover from DJIA 

to Brent
FTSE100 aso=bso=0 0.376 0.829 No spillover from Brent to 

FTSE100
aos=bos=0 0.485 0.784 No spillover from 

FTSE100 to Brent
MIB aso=bso=0 2.348 0.309 No spillover from Brent 

to MIB
aos=bos=0 7.943 0.019 Spillover from MIB to 

Brent
Nikkei225 aso=bso=0 4.947 0.084 No spillover from Brent to 

Nikkei225
aos=bos=0 0.404 0.817 No spillover from 

Nikkei225 to Brent
TSX aso=bso=0 1.934 0.380 No spillover from Brent 

to TSX
aos=bos=0 8.584 0.014 Spillover from TSX to 

Brent

Table 4: Wald tests for volatility spillover effects with the 
AVARMA-DCC model

H0 Wald Sig. Conclusion
CAC40 aso=bso=0 1.022 0.600 No spillover from Brent to 

CAC40
aos=bos=0 1.403 0.496 No spillover from CAC40 

to Brent
DAX aso=bso=0 1.704 0.427 No spillover from Brent to 

DAX
aos=bos=0 2.991 0.224 No spillover from DAX to 

Brent
DJIA aso=bso=0 4.663 0.097 No spillover from Brent to 

DJIA
aos=bos=0 3.650 0.161 No spillover from DJIA to 

Brent
FTSE100 aso=bso=0 1.243 0.537 No spillover from Brent to 

FTSE100
aos=bos=0 2.344 0.310 No spillover from 

FTSE100 to Brent
MIB aso=bso=0 3.308 0.191 No spillover from Brent 

to MIB
aos=bos=0 9.121 0.010 Spillover from MIB to 

Brent
Nikkei225 aso=bso=0 8.446 0.015 Spillover from Brent to 

Nikkei225
aos=bos=0 0.317 0.853 No spillover from 

Nikkei225 to Brent
TSX aso=bso=0 0.028 0.986 No spillover from Brent 

to TSX
aos=bos=0 2.864 0.239 No spillover from TSX to 

Brent

Table 5: Optimal portfolio weights and hedge ratios for 
pairs of oil and stock assets
Portfolio ABEKK AVARMA-CCC AVARMA-DCC
CAC40/Brent

wso,t 0.2172 0.2160 0.2058

βso,t   0.1311 0.1092 0.1327
DAX/Brent

wso,t 0.2518 0.2479 0.2368
βso,t 0.1194 0.1078 0.1272

DJIA/Brent
wso,t 0.1165 0.1257 0.1121
βso,t 0.0741 0.0538 0.0715

FTSE100/Brent
wso,t 0.1242 0.1269 0.1208
βso,t 0.1117 0.0929 0.1061

MIB/Brent
wso,t 0.2742 0.2650 0.2655
βso,t 0.1605 0.1301 0.1707

Nikkei225/Brent
wso,t 0.2561 0.2575 0.2494
βso,t 0.0983 0.0967 0.1107

TSX/Brent
wso,t 0.0769 0.0599 0.0559

βso,t 0.1461 0.1396 0.1521

The table reports average optimal weights of oil and hedge ratios for an oil-stock 
portfolio using the estimated conditional variances and covariance from the three models 
for each oil/stock pair: ABEKK-GARCH(1,1), AVARMA-CCC-GARCH(1,1) and 
AVARMA-DCC-GARCH(1,1)

is depending on its own past volatility. The same holds, only for 
the oil’s variance equations for the ARCH effects (significant 

coefficients on aoo) which means that the current volatility is 
affected by its own past shocks. In addition, bidirectional volatility 
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spillover between the French stock market and the Brent oil was 
found according to the Asymmetric BEKK model however, both 
the AVARMA models failed to detect any volatility transmissions 
between these markets.

In terms of the DAX index (Table A2), all three models show that 
the conditional variances of stock and oil markets are characterized 
by their own lagged conditional variances. The asymmetric 
BEKK model supports the presence of ARCH effects in both 
equations (significant coefficients on ass and aoo) however, once 
again, the AVARMACCC and AVARMA-DCC models fail to 
provide evidence of own past shocks regarding the stock markets’ 
equations (insignificant coefficients on ass), yet both models show 
that the current variance of the oil market is depending on its own 
past shocks. Furthermore, the ABEKK model reveals volatility 
spillover from DAX to Brent as indicated by the statistically 
significant coefficient of the Wald test (Table 2). In contrast, 
the results of the other two models agree on the absence of any 
volatility spillover effects between the two variables.

With regard to Table A3 and the American stock market, all 
three models present strong evidence of own short and long-term 
persistence (except for the AVARMA-CCC and AVARMA-DCC 
models in which the coefficients on ass are not significant). The 
ABEKK model uncovers bidirectional volatility transmission 
while the remaining models do not show any relation among the 
markets.

Turning our interest in the English index (Table A4) and regarding 
the ABEKK model, our findings show that the conditional variance 
of both indices is depending on its own past shocks and own past 
volatilities. The AVARMA-CCC model indicates that only the 
conditional variance of the Brent oil is affected by its own past 
volatility, while, the AVARMA-DCC model depicts that the stock 
market’s variance is affected only by its own shocks and that the 
current volatility of the oil market depends on its own past shocks 
and past volatility. Once again, the AVARMA models validate the 
absence of any volatility transmission between the stock and oil 
markets. Nevertheless, the ABEKK model yields evidence of a 
two-way causality in the variance.

From the Italian stock market and Table A5, we ascertain that 
regardless of the model, the current volatility of the oil is affected 
by its own shocks and past volatility and that the current volatility 
of the MIB index is depending on its own past volatility. In 
addition, the ABEKK model depicts evidence of ARCH effects 
in the stock’s equation. All three models reveal a unidirectional 
volatility transmission from the stock market to the oil market 

while the ABEKK model supports also the reverse direction of 
causality.

Particularly interesting results arise for the Japanese stock market 
(Table A6). First, while the ABEKK model indicates considerable 
evidence of own short persistence in the stock’s equation, the rest 
of the models support that only the own past volatility has an effect 
on the current volatility for both indices. Second, the ABEKK 
framework provides evidence of unidirectional volatility spillover 
from the Brent oil to the Japanese stock market while, regarding 
the results of the AVARMA-CCC model, we find a lack of any 
volatility spillover. In contrast, the AVARMA-DCC model agrees 
with the asymmetric BEKK model on the one-way causality from 
the oil market to the stock market.

Finally from Table A7, the findings for the stock market of our 
only oil-exporting country-Canada note that for all models, the 
conditional variances are depending on their own lagged volatility. 
Moreover, the ABEKK model provides evidence of short-term 
persistence in the stock equation. In addition, according to ABEKK 
results, there is a feedback volatility spillover. The AVARMA-CCC 
reveals a unidirectional volatility transmission from the TSX to 
the Brent oil market. Instead, the AVARMA-DCC model supports 
that the two markets are independent.

For each pair of crude oil and stock assets, the estimated 
coefficients on the constant conditional correlations from the 
AVARMA-CCC models are very low and statistically significant. 
Moreover, the significant coefficients on doo and dss, in almost all 
cases, propose that the “bad” news tends to increase the volatility 
of the indices more than the “good” news of the same magnitude. 
In addition, given the significant coefficient on dos only for the case 
of TSX, the results support that the past shocks of the Canadian 
stock market have an asymmetric effect on oil volatility.

The asymmetric BEKK model outperforms the rest of the models 
based on the Log-Likelihood value, with an exception of the 
DAX and Nikkei225 (AVARMA-DCC fits better), indicating its 
superiority. Diagnostics tests on the standardized residuals show 
that only in the Japanese stock market, the mean equations were 
not enough to deal with autocorrelation. Nevertheless, the Q-test 
statistics of Ljung and Box (1978) on the squared standardized 
residuals and the ARCH test of Engle (1982) are not statistically 
significant, implying that the MGARCH models were adequate 
to eliminate the ARCH effects.

Overall, the results from the ABEKK model reveal plenty of 
interactions among the markets while, both the AVARMA models 

Table 6: Information criterion for VAR estimation
Lags 0 1 2 3 4 5
CAC40 11.1555* 11.1572 11.1767 11.1948 11.2165 11.2380
DAX 11.2865* 11.3003 11.3182 11.3371 11.3599 11.3786
DJIA 10.5235* 10.5447 10.5647 10.5816 10.6060 10.6285
FTSE100 10.6673* 10.6787 10.6974 10.7197 10.7378 10.7606
MIB 11.2955* 11.3149 11.3342 11.3486 11.3685 11.3907
Nikkei225 11.1757* 11.2007 11.2242 11.2436 11.2681 11.2914
TSX 10.4579* 10.4704 10.4951 10.5144 10.5348 10.5438
∗indicates the optimal lag selected by the Schwarz information criterion for each pair of stock index and crude oil Brent returns
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are more parsimonious in the relations of the volatility. Figure 1 
summarizes the results of the volatility spillover effects of the 
three competitive models. As it is apparent from Figure 1, in the 
case of the ABEKK model, all indices affect, or are affected by 
the oil market, yet this is not the case for the AVARMA models. 
The AVARMA-CCC model uncovers interactions only from the 
Italian and the Canadian stock markets to the oil market and the 
AVARMA-DCC model proposes that the Italian stock market is 
able to affect the oil market as well as that the Japanese stock 
market is depending on the Brent market. Moreover, for each asset, 
the estimated coefficient on own long-term persistence is greater 
than the estimated coefficient on own short-term persistence. 
Interestingly, we can conclude that volatility spillover effects are 
highly dependent on the choice of the multivariate GARCH model.

The conditional volatility estimates can be used to construct hedge 
ratios as proposed by Kroner and Sultan (1993). A long position 
in a stock asset can be hedged with a short position in an oil asset. 
The hedge ratio between stock and oil assets can be written as:

  , , , / =so t so t oo th h  (19)

where hso,t is the estimated covariance and hoo,t is the estimated 
variance of the crude oil market. We compute the hedge ratios 
from our three models (ABEKK, AVARMA-CCC and AVARMA-
DCC). Their graphs are presented in Figures A3 and A4 and show 
considerable variability across the sample period indicating that 
hedging positions must be adjusted frequently.

Again, the estimated conditional volatilities from the three models 
can be used to construct optimal portfolio weights. The optimal 
holding weight of oil in a one-dollar portfolio of oil/stock asset at 

time t, according to Kroner and Ng (1998), can be expressed as:
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Hence, the weight of the stock market index in the oil/stock 
portfolio is equal to (1−wso,t). By using three multivariate 
GARCH models to compute the optimal portfolio weights and the 
hedge ratios enable us to discuss the results from a comparative 
perspective.

We report the average values of optimal weights wso,t and hedge 
ratios βso,t in Table 5. For example, the average value of the hedge 
ratio between CAC40 and Brent, according to the ABEKK model, is 
0.1311 indicating that a 1$ long position in CAC40 can be hedged for 
13.11 cents in the oil market. Similarly, the corresponding value of 
the hedge ratio under the AVARMA-CCC model is 0.1092 implying 
that a 1$ long position in CAC40 should be shorted by 10.92 cents 
of Brent oil. Overall, all models give suchlike results in each stock 
index that are low in values. Finally, we identify that investors 
operating in Italy, with relatively greater hedge ratios and thus 
higher hedging costs, require more oil assets than those operating 
in the other countries of the Group of Seven to minimize the risk.

Turning our interest in the optimal weights, Table 5 shows fairly 
similar results for all models in each stock index. The average 

ABEKK AVARMA-CCC

AVARMA-DCC

Figure 1: Aggregated results of volatility spillover effects

The diagrams are based on the Wald tests at 5% significance level. The arrows indicate the direction of the volatility spillover effects. When there are 
no arrows, it means that there are not any spillover effects between the indices
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weight for the CAC40/Brent portfolio, following the results of the 
ABEKK model, is 0.2172, implying that for a 1$ portfolio, 21.72 
cents should be invested in the Brent oil and 78.28 cents invested in 
the stock index. In the same way, for the AVARMA-CCC model and 
the CAC40/Brent portfolio, the average portfolio weight is 0.2160, 
meaning that for a 1$ portfolio, 21.60 cents should be invested in 
Brent crude oil and the remaining 78.40 cents invested in French 
stock market index. On the whole, the average weights range from 
0.0599 (TSX/Brent-AVARMA-DCC/CCC) to 0.2742 (MIB/Brent-
ABEKK). This finding means that the oil risk is considerably greater 
for Canada than for Italy, and any fluctuation in the price of crude 
oil could lead to undesirable effects on the performance of hedged 
portfolios. Finally, given our results for optimal hedge ratios, oil 
assets should be a part of a diversified portfolio of stocks as they 
increase the risk-adjusted performance of the hedged portfolio.

6. CONCLUDING REMARKS

The main objective of this article was to investigate the performance 
of asymmetric multivariate GARCH models on the mean and 
volatility transmission between oil and the stock markets of the 
Group of Seven (G7). Employing asymmetric models such as the 
ABEKK, the AVARMA-CCC, and the AVARMA-DCC-GARCH, 
which permit volatility spillover; we find considerable volatility 
spillover effects among the markets according to the ABEKK 
results. However, based on the AVARMA models there are 
negligible interactions and mostly from the stock to the oil markets. 
This finding is crucial and implies that the results of the volatility 
spillovers are highly depending on the choice of the multivariate 
GARCH model. In addition, the consensus of our results shows 
that the ABEKK models outperform the rest of the models.

Our examination of optimal weights and hedge ratios implies that 
optimal portfolios in all countries of the Group of Seven should 
possess more stocks than oil assets and that stock investment 
risk can be hedged by taking a short position in the oil markets. 
Moreover, regardless of the multivariate GARCH model used, 
our findings indicate that optimally hedged oil/stock portfolios are 
performing better than portfolios containing only stocks.
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APPENDIX A. SUPPLEMENTARY MATERIAL

Closing Prices Returns
CAC40

DAX

DJIA

FTSE100

Figure A1: Plot of time-series
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Closing Prices Returns
MIB

Nikkei225

TSX

Brent

Figure A2: Plot of time-series
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ABEKK AVARMA-CCC AVARMA-DCC
CAC40

DAX

DJIA

FTSE100

Figure A3: Hedge ratios from ABEKK, AVARMA-CCC and AVARMA-DCC models
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Figure A4: Hedge ratios from ABEKK, AVARMA-CCC and AVARMA-DCC models
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Table A1: Multivariate GARCH results for France CAC40
Parameters ABEKK AVARMA-CCC AVARMA-DCC

Coeff. Sig. Coeff. Sig. Coeff. Sig.
Mean equation

cons 0.044 0.515 0.040 0.554 0.064 0.324
cono 0.016 0.884 0.061 0.641 0.087 0.519

Variance equation
css 0.606 0.000 0.421 0.005 0.399 0.051

cso 0.109 0.475 ----- ----- ----- -----

coo 0.287 0.051 0.191 0.270 0.205 0.210

ass 0.052 0.684 0.006 0.830 0.010 0.780

aso −0.086 0.005 0.006 0.475 0.005 0.596

aos −0.148 0.091 0.045 0.262 0.046 0.274

aoo 0.117 0.026 0.033 0.025 0.031 0.018

bss 0.895 0.000 0.723 0.000 0.746 0.000

bso 0.007 0.381 0.014 0.262 0.012 0.392

bos −0.037 0.089 −0.027 0.543 −0.030 0.467

boo 0.968 0.000 0.917 0.000 0.917 0.000

dss 0.483 0.000 0.328 0.000 0.299 0.004

dso 0.026 0.376 ----- ----- ----- -----

dos 0.080 0.406 ----- ----- ----- -----

doo 0.303 0.000 0.073 0.007 0.076 0.001
ρ ----- ----- 0.183 0.000 ----- -----
θ1 ----- ----- ----- ----- 0.039 0.044
θ2 ----- ----- ----- ----- 0.946 0.000

Residual diagnostics for independent series
CAC40 BRENT CAC40 BRENT CAC40 BRENT

LogLik. −5550.73 −5573.01 −5553.56
Q (24) 28.341 19.725 29.384 18.703 29.098 22.114
Q2 (24) 29.970 19.204 30.191 21.941 29.750 17.735
ARCH(10) 0.968 0.465 0.779 0.383 0.790 0.326
*, **, *** indicate statistical significance at 1%, 5% and 10% respectively. LogLik. is the value of the logarithmic likelihood. ARCH(10) represents the F-statistics of the ARCH test of 
Engle (1982) at 10th lag. Q(24) and Q2 (24) are the Ljung and Box (1978) statistics for serial correlation and conditional heteroskedasticity of the series at 24th lag. cons and cono denote the 
constants in the mean equations of stock and oil, respectively

Parameters ABEKK AVARMA-CCC AVARMA-DCC
Coeff. Sig. Coeff. Sig. Coeff. Sig.

Mean equation
cons 0.161 0.017 0.134 0.095 0.155 0.031
cono 0.046 0.706 0.066 0.604 0.075 0.488

Variance equation
css 0.633 0.000 0.532 0.017 0.533 0.009

cso 0.229 0.161 ----- ----- ----- -----

coo 0.280 0.062 0.234 0.184 0.261 0.121

ass 0.156 0.011 0.009 0.816 0.013 0.709

aso 0.083 0.093 0.008 0.424 0.007 0.415

aos -0.112 0.086 0.057 0.164 0.058 0.084

aoo 0.155 0.000 0.034 0.010 0.032 0.011

bss 0.902 0.000 0.700 0.000 0.715 0.000

bso −0.010 0.260 0.020 0.412 0.017 0.507

bos −0.028 0.212 −0.040 0.274 −0.044 0.148

boo 0.963 0.000 0.913 0.000 0.914 0.000

dss 0.452 0.000 0.324 0.016 0.303 0.023

dso −0.018 0.642 ----- ----- ----- -----

dos 0.071 0.271 ----- ----- ----- -----

Table A2: Multivariate GARCH results for Germany DAX

(Contd...)
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Table A3: Multivariate GARCH results for U.S.A. DJIA
Parameters ABEKK AVARMA-CCC AVARMA-DCC

Coeff Sig. Coeff Sig. Coeff Sig.
Mean equation

cons 0.101 0.041 0.098 0.041 0.118 0.029
cono 0.001 0.995 0.061 0.635 0.039 0.779

Variance Equation
css 0.457 0.000 0.200 0.033 0.187 0.018

cso 0.217 0.307 ----- ----- ----- -----

coo 0.244 0.337 0.124 0.538 0.093 0.614

ass -0.019 0.730 −0.080 0.001 −0.076 0.000

aso 0.093 0.002 0.007 0.212 0.006 0.089

aos 0.221 0.000 0.029 0.642 0.020 0.638

aoo −0.040 0.591 0.024 0.098 0.022 0.094

bss 0.871 0.000 0.761 0.000 0.787 0.000

bso 0.002 0.814 0.006 0.548 0.005 0.442

bos −0.089 0.106 0.071 0.466 0.080 0.291

boo 0.970 0.000 0.913 0.000 0.914 0.000

dss 0.529 0.000 0.407 0.001 0.366 0.000

dso 0.015 0.594 ----- ----- ----- -----

dos 0.119 0.241 ----- ----- ----- -----

doo 0.322 0.000 0.080 0.001 0.087 0.001
ρ ----- ----- 0.126 0.000 ----- -----
θ1 ----- ----- ----- ----- 0.039 0.006
θ2 ----- ----- ----- ----- 0.950 0.000

Residual Diagnostics for Independent Series
DJIA BRENT DJIA BRENT DJIA BRENT

LogLik. −5215.86 −5240.68 −5216.26
Q (24) 29.930 21.408 30.625 21.681 30.339 24.338
Q2 (24) 21.102 13.652 23.141 17.872 22.287 12.889
ARCH(10) 0.667 0.283 0.570 0.299 0.548 0.264
Same as Table A1

Parameters ABEKK AVARMA-CCC AVARMA-DCC
Coeff. Sig. Coeff. Sig. Coeff. Sig.

doo 0.299 0.000 0.077 0.002 0.080 0.002
ρ ----- ----- 0.169 0.000 ----- -----
θ1 ----- ----- ----- ----- 0.029 0.013
θ2 ----- ----- ----- ----- 0.963 0.000

Residual diagnostics for independent series
DAX BRENT DAX BRENT DAX BRENT

LogLik. −5640.91 −5650.37 −5630.98
Q (24) 19.556 17.736 20.159 18.879 20.120 21.941
Q2 (24) 28.767 18.177 28.009 22.026 27.426 19.296
ARCH(10) 0.778 0.392 0.806 0.398 0.775 0.347
Same as Table A1

Table A2: (Continued)
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Table A4: Multivariate GARCH results for U.K. FTSE100
Parameters ABEKK AVARMA-CCC AVARMA-DCC

Coeff. Sig. Coeff. Sig. Coeff. Sig.
Mean equation
cons −0.005 0.932 −0.024 0.678 −0.002 0.962
cono −0.033 0.806 0.047 0.739 0.045 0.753
Variance equation
css 0.487 0.000 0.300 0.488 0.242 0.017

cso 0.161 0.389 ----- ----- ----- -----

coo 0.341 0.005 0.140 0.591 0.100 0.597

ass 0.076 0.135 −0.057 0.417 −0.051 0.042

aso −0.069 0.001 0.003 0.580 0.001 0.708

aos −0.191 0.021 0.043 0.756 0.015 0.840

aoo 0.136 0.003 0.030 0.099 0.026 0.064

bss 0.889 0.000 0.718 0.151 0.790 0.000

bso 0.007 0.218 0.013 0.812 0.007 0.458

bos −0.034 0.302 0.021 0.838 0.045 0.557

boo 0.965 0.000 0.913 0.000 0.918 0.000

dss 0.515 0.000 0.421 0.419 0.342 0.002

dso 0.004 0.852 ----- ----- ----- -----

dos 0.087 0.435 ----- ----- ----- -----

doo 0.300 0.000 0.076 0.003 0.079 0.006
ρ ----- ----- 0.200 0.000 ----- -----
θ1 ----- ----- ----- ----- 0.036 0.072
θ2 ----- ----- ----- ----- 0.952 0.000

Residual diagnostics for independent series
FTSE100 BRENT FTSE100 BRENT FTSE100 BRENT

LogLik. −5293.86 −5315.00 −5294.07
Q (24) 20.217 17.309 20.808 20.319 20.589 21.677

Q2 (24) 26.659 18.004 24.457 19.809 24.182 13.662
ARCH(10) 1.050 0.298 0.905 0.342 0.874 0.202
Same as Table A1

Parameters ABEKK AVARMA-CCC AVARMA-DCC
Coeff. Sig. Coeff. Sig. Coeff. Sig.

Mean equation
cons 0.048 0.558 0.057 0.497 0.081 0.319
cono 0.045 0.738 0.107 0.412 0.155 0.260

Variance equation
css 0.413 0.001 0.257 0.092 0.243 0.099

cso −0.216 0.089 ----- ----- ----- -----

coo 0.000 1.000 0.469 0.122 0.488 0.187

ass 0.193 0.002 0.073 0.144 0.077 0.058

aso 0.054 0.002 0.013 0.134 0.013 0.073

aos 0.194 0.000 0.094 0.054 0.101 0.027

aoo −0.097 0.034 0.043 0.014 0.040 0.041

bss 0.933 0.000 0.877 0.000 0.882 0.000

bso 0.005 0.319 −0.018 0.143 −0.018 0.082

bos −0.016 0.174 −0.095 0.011 −0.093 0.005

boo 0.965 0.000 0.906 0.000 0.905 0.000

dss 0.341 0.000 0.075 0.057 0.070 0.032

dso −0.005 0.871 ----- ----- ----- -----

dos −0.074 0.348 ----- ----- ----- -----

doo 0.349 0.000 0.071 0.004 0.071 0.013

Table A5: Multivariate GARCH results for Italy MIB

(Contd...)
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Table A6: Multivariate GARCH results for Japan Nikkei225
Parameters ABEKK AVARMA-CCC AVARMA-DCC

Coeff. Sig. Coeff. Sig. Coeff. Sig.
Mean equation

cons 0.045 0.602 0.080 0.353 0.086 0.255
cono 0.060 0.651 0.056 0.636 0.074 0.531

Variance equation
css 1.238 0.000 1.666 0.003 1.618 0.000

cso 0.126 0.673 ----- ----- ----- -----

coo 0.197 0.736 0.624 0.450 0.562 0.391

ass 0.062 0.421 −0.004 0.928 −0.008 0.850

aso −0.119 0.033 0.022 0.089 0.023 0.027

aos −0.078 0.206 0.033 0.692 0.031 0.642

aoo 0.158 0.049 0.038 0.116 0.036 0.120

bss 0.823 0.000 0.645 0.000 0.659 0.000

bso 0.019 0.056 0.003 0.897 0.001 0.913

bos −0.058 0.547 −0.082 0.615 −0.070 0.591

boo 0.971 0.000 0.916 0.000 0.917 0.000

dss 0.388 0.000 0.209 0.019 0.206 0.000

dso 0.080 0.154 ----- ----- ----- -----

dos 0.102 0.454 ----- ----- ----- -----

doo 0.258 0.000 0.081 0.005 0.082 0.001
ρ ----- ----- 0.151 0.000 ----- -----
θ1 ----- ----- ----- ----- 0.024 0.009
θ2 ----- ----- ----- ----- 0.964 0.000

Residual diagnostics for independent series
Nikkei225 BRENT Nikkei225 BRENT Nikkei225 BRENT

LogLik. −5676.83 −5682.39 −5673.51
Q (24) 37.814** 21.480 37.263** 20.541 37.228** 20.875
Q2 (24) 15.071 29.824 15.964 29.662 15.888 26.600
ARCH(10) 0.415 0.670 0.540 0.496 0.532 0.475
Same as Table A1

Parameters ABEKK AVARMA-CCC AVARMA-DCC
Coeff. Sig. Coeff. Sig. Coeff. Sig.

ρ ----- ----- 0.194 0.000 ----- -----
θ1 ----- ----- ----- ----- 0.026 0.033
θ2 ----- ----- ----- ----- 0.968 0.000

Residual diagnostics for independent series
MIB BRENT MIB BRENT MIB BRENT

LogLik. −5658.23 −5678.93 −5662.72
Q (24) 31.408 19.609 33.197 18.170 32.796 22.433
Q2 (24) 12.245 25.056 13.992 31.868 15.049 25.207
ARCH(10) 0.331 0.578 0.453 0.346 0.480 0.356
Same as Table A1

Table A5: (Continued)
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Table A7: Multivariate GARCH results for Canada TSX
Parameters ABEKK AVARMA-CCC AVARMA-DCC

Coeff. Sig. Coeff. Sig. Coeff. Sig.
Mean equation

cons 0.108 0.020 0.117 0.008 0.125 0.025
cono 0.016 0.893 0.085 0.447 0.101 0.524

Variance equation
css 0.450 0.000 0.154 0.077 0.143 0.606

cso 0.371 0.021 ----- ----- ----- -----

coo 0.000 1.000 0.123 0.214 0.108 0.317

ass 0.274 0.000 0.017 0.579 0.025 0.822

aso −0.091 0.010 0.004 0.457 0.001 0.913

aos −0.052 0.691 0.228 0.031 0.198 0.471

aoo −0.007 0.921 0.015 0.265 0.015 0.333

bss 0.868 0.000 0.656 0.000 0.724 0.451

bso 0.007 0.265 0.025 0.196 0.018 0.877

bos −0.106 0.016 −0.204 0.194 −0.147 0.677

boo 0.981 0.000 0.949 0.000 0.945 0.000

dss 0.470 0.000 0.280 0.005 0.229 0.738

dso 0.011 0.602 ----- ----- ----- -----

dos 0.230 0.004 ----- ----- ----- -----

doo 0.284 0.000 0.057 0.005 0.057 0.134
ρ ----- ----- 0.322 0.000 ----- -----
θ1 ----- ----- ----- ----- 0.020 0.263
θ2 ----- ----- ----- ----- 0.973 0.000

Residual diagnostics for independent series
TSX BRENT TSX BRENT TSX BRENT

LogLik. −5213.55 −5233.95 −5221.00
Q (24) 29.321 24.687 29.316 28.649 29.737 28.765
Q2 (24) 15.953 21.231 16.044 24.521 14.674 17.912
ARCH(10) 0.639 0.480 0.530 0.309 0.478 0.238
Same as Table A1


